Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (209)
  • Open Access

    ARTICLE

    GPU Usage Time-Based Ordering Management Technique for Tasks Execution to Prevent Running Failures of GPU Tasks in Container Environments

    Joon-Min Gil1, Hyunsu Jeong1, Jihun Kang2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2199-2213, 2025, DOI:10.32604/cmc.2025.061182 - 17 February 2025

    Abstract In a cloud environment, graphics processing units (GPUs) are the primary devices used for high-performance computation. They exploit flexible resource utilization, a key advantage of cloud environments. Multiple users share GPUs, which serve as coprocessors of central processing units (CPUs) and are activated only if tasks demand GPU computation. In a container environment, where resources can be shared among multiple users, GPU utilization can be increased by minimizing idle time because the tasks of many users run on a single GPU. However, unlike CPUs and memory, GPUs cannot logically multiplex their resources. Additionally, GPU memory… More >

  • Open Access

    ARTICLE

    A New Approach for the Calculation of Slope Failure Probability with Fuzzy Limit-State Functions

    Jianing Hao1, Dan Yang2, Guanxiong Ren1, Ying Zhao3, Rangling Cao4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 141-159, 2025, DOI:10.32604/fdmp.2024.054469 - 24 January 2025

    Abstract This study presents an innovative approach to calculating the failure probability of slopes by incorporating fuzzy limit-state functions, a method that significantly enhances the accuracy and efficiency of slope stability analysis. Unlike traditional probabilistic techniques, this approach utilizes a least squares support vector machine (LSSVM) optimized with a grey wolf optimizer (GWO) and K-fold cross-validation (CV) to approximate the limit-state function, thus reducing computational complexity. The novelty of this work lies in its application to one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) slope models, demonstrating its versatility and high precision. The proposed method consistently achieves… More > Graphic Abstract

    A New Approach for the Calculation of Slope Failure Probability with Fuzzy Limit-State Functions

  • Open Access

    REVIEW

    A Survey of Link Failure Detection and Recovery in Software-Defined Networks

    Suheib Alhiyari, Siti Hafizah AB Hamid*, Nur Nasuha Daud

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 103-137, 2025, DOI:10.32604/cmc.2024.059050 - 03 January 2025

    Abstract Software-defined networking (SDN) is an innovative paradigm that separates the control and data planes, introducing centralized network control. SDN is increasingly being adopted by Carrier Grade networks, offering enhanced network management capabilities than those of traditional networks. However, because SDN is designed to ensure high-level service availability, it faces additional challenges. One of the most critical challenges is ensuring efficient detection and recovery from link failures in the data plane. Such failures can significantly impact network performance and lead to service outages, making resiliency a key concern for the effective adoption of SDN. Since the More >

  • Open Access

    ARTICLE

    A Decentralized and TCAM-Aware Failure Recovery Model in Software Defined Data Center Networks

    Suheib Alhiyari, Siti Hafizah AB Hamid*, Nur Nasuha Daud

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1087-1107, 2025, DOI:10.32604/cmc.2024.058953 - 03 January 2025

    Abstract Link failure is a critical issue in large networks and must be effectively addressed. In software-defined networks (SDN), link failure recovery schemes can be categorized into proactive and reactive approaches. Reactive schemes have longer recovery times while proactive schemes provide faster recovery but overwhelm the memory of switches by flow entries. As SDN adoption grows, ensuring efficient recovery from link failures in the data plane becomes crucial. In particular, data center networks (DCNs) demand rapid recovery times and efficient resource utilization to meet carrier-grade requirements. This paper proposes an efficient Decentralized Failure Recovery (DFR) model… More >

  • Open Access

    PROCEEDINGS

    Study on Repair of Cracked Aircraft Structures with Single-Sided Bonded Carbon Fiber-Reinforced Polymer Composite Patches

    Junshan Hu1,2,*, Shiqing Mi1, Jinrong Fang1, Wei Tian1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011840

    Abstract This research aims to investigate efficient repair techniques of cracked Ti-alloy aircraft structures with adhesively bonded carbon fiber-reinforced polymer composite patches. The repaired specimens in the configuration of a Ti-alloy butt joint with one-side bonded composite patch were prepared under multiple repair factors including patch thickness, patch length, adhesive thickness, cure pressure, patch layup and surface treatment. The repair efficiency was evaluated by loading behavior, bonded interface microstructure and failure mode. The three-dimensional (3D) finite element (FE) model has been established. Based on 3D Hashin failure criteria, the damage initiation and evolution in CFRP were… More >

  • Open Access

    ARTICLE

    Modeling, Simulation, and Risk Analysis of Battery Energy Storage Systems in New Energy Grid Integration Scenarios

    Xiaohui Ye1,*, Fucheng Tan1, Xinli Song2, Hanyang Dai2, Xia Li2, Shixia Mu2, Shaohang Hao2

    Energy Engineering, Vol.121, No.12, pp. 3689-3710, 2024, DOI:10.32604/ee.2024.055200 - 22 November 2024

    Abstract Energy storage batteries can smooth the volatility of renewable energy sources. The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy storage system (BESS). However, the current modeling of grid-connected BESS is overly simplistic, typically only considering state of charge (SOC) and power constraints. Detailed lithium (Li)-ion battery cell models are computationally intensive and impractical for real-time applications and may not be suitable for power grid operating conditions. Additionally, there is a lack of real-time batteries risk assessment frameworks. To address these issues, in this… More >

  • Open Access

    PROCEEDINGS

    Progressive Damage Analysis of 3D Woven Composite SENT Test Using a Ternary Model

    Wushuai Liu1, Wu Xu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012893

    Abstract It is of great significance for improving the in-plane fracture toughness of 3D woven composite (3DWC) to study the failure mechanism of a single edge notch tension (SENT) test. It requires a relatively high computational cost to establish the SENT model based on conformal modeling method. A SENT is established using a proposed ternary model. The matrix cracking, yarn rupture, and debonding at the yarn/matrix interface are involved in the ternary model. Based on the developed SENT model, the progressive damage initiation and evolution of 3DWC SENT are predicted. The load-displacement curves and damage of More >

  • Open Access

    PROCEEDINGS

    Mechanical Properties and Failure Modes of 3D-Printed Continuous Fiber-Reinforced Single-Bolt Composite Joints with Curved Paths and Variable Hatch Spaces

    Xin Zhang1,2, Xitao Zheng1,2, Tiantian Yang3, Mingyu Song1,2, Yuanyuan Tian4, Leilei Yan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011277

    Abstract Composite joints are widely used in machinery industries such as aviation, aerospace, and marine, where they transfer main loads as lightweight connectors. Recently, 3D printing with continuous fibers has relieved the required molds in composite manufacturing process and given flexibility to the design of robust composite joints. However, how the curved paths and variable hatch spaces affect the mechanical properties and failure modes of 3D-printed single-bolt composite joints with continuous fibers remains undisclosed. In this study, 3D printing has been introduced to fabricate three types of continuous fiber-reinforced single-bolt composite joints with different paths, including… More >

  • Open Access

    REVIEW

    Sodium-Glucose Cotransporter 2 Inhibitors in Adult and Pediatric Congenital Heart Disease: Review of Emerging Data and Future Directions

    William H. Marshall V1,2,*, Lydia K. Wright2

    Congenital Heart Disease, Vol.19, No.4, pp. 419-433, 2024, DOI:10.32604/chd.2024.056608 - 31 October 2024

    Abstract Heart failure (HF) is common in patients with congenital heart disease (CHD) and there are limited medical therapies. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a proven medical therapy in patients with acquired HF, though data are limited in patients with CHD. The aim of this review is to summarize the current evidence for use of SGLT2i in patients with CHD and identify future directions for study. In available publications, SGLT2i in patients with CHD seem to be well tolerated, with similar side effect profile to patients with acquired HF. Improvement in functional capacity and natriuretic More >

  • Open Access

    PROCEEDINGS

    Numerical Investigation on Blasting Failure and Impact Effects of Marine Launching Airbags

    Jingjing Liu1, Long Yu1,*, Xiaoyan Li2, Jing Liu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012234

    Abstract Owing to uncontrollable deformation during the launching process, significant hazards such as airbag blast failure can be observed, which can cause severe damage to surrounding structures. Involving gas-solid coupling and nonlinear damage, the analysis and evaluation of airbag blasts are complex. Therefore, an effective method to analyze the possible blast behavior by coupling smoothed particle hydrodynamics (SPH) and the finite element method (FEM) has been presented in this study. First, a single airbag compression model was established to calculate the stiffness curve and the rationality of the numerical method was verified through comparison with experiments.… More >

Displaying 1-10 on page 1 of 209. Per Page