Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (82)
  • Open Access

    ARTICLE

    Fusion Fault Diagnosis Approach to Rolling Bearing with Vibrational and Acoustic Emission Signals

    Junyu Chen1, Yunwen Feng1,*, Cheng Lu1,2, Chengwei Fei2

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 1013-1027, 2021, DOI:10.32604/cmes.2021.016980 - 08 October 2021

    Abstract As the key component in aeroengine rotor systems, the health status of rolling bearings directly influences the reliability and safety of aeroengine rotor systems. In order to monitor rolling bearing conditions, a fusion fault diagnosis method, namely empirical mode decomposition (EMD)-Mahalanobis distance (E2MD) and improved wavelet threshold (IWT) (E2MD-IWT) for vibrational signals and acoustic emission (AE) signals is developed to improve the diagnostic accuracy of rolling bearings. The IWT method is proposed with a hard wavelet threshold and a soft wavelet threshold. Moreover, it is shown to be effective through numerical simulation. EMD is utilized… More >

  • Open Access

    ARTICLE

    Open-Circuit Faults Diagnosis in Direct-Drive PMSG Wind Turbine Converter

    Wei Zhang1,2, Qihui Ling1,2,*, Qiancheng Zhao1,2, Hushu Wu3

    Energy Engineering, Vol.118, No.5, pp. 1515-1535, 2021, DOI:10.32604/EE.2021.014162 - 16 July 2021

    Abstract The condition monitoring and fault diagnosis have been identified as the key to achieving higher availabilities of wind turbines. Numerous studies show that the open-circuit fault is a significant contributor to the failures of wind turbine converter. However, the multiple faults combinations and the influence of wind speed changes abruptly, grid voltage sags and noise interference have brought great challenges to fault diagnosis. Accordingly, concerning the open-circuit fault of converters in direct-driven PMSG wind turbine, a diagnostic method for multiple open-circuit faults is proposed in this paper, which is divided into two tasks: The first… More >

  • Open Access

    ARTICLE

    A Novel Method Based on UNET for Bearing Fault Diagnosis

    Dileep Kumar1,*, Imtiaz Hussain Kalwar2, Tanweer Hussain1, Bhawani Shankar Chowdhry1, Sanaullah Mehran Ujjan1, Tayab Din Memon3

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 393-408, 2021, DOI:10.32604/cmc.2021.014941 - 04 June 2021

    Abstract Reliability of rotating machines is highly dependent on the smooth rolling of bearings. Thus, it is very essential for reliable operation of rotating machines to monitor the working condition of bearings using suitable fault diagnosis and condition monitoring approach. In the recent past, Deep Learning (DL) has become applicable in condition monitoring of rotating machines owing to its performance. This paper proposes a novel bearing fault diagnosis method based on the processing and analysis of the vibration images. The proposed method is the UNET model that is a recent development in DL models. The model More >

  • Open Access

    ARTICLE

    Novel Power Transformer Fault Diagnosis Using Optimized Machine Learning Methods

    Ibrahim B.M. Taha1, Diaa-Eldin A. Mansour2,*

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 739-752, 2021, DOI:10.32604/iasc.2021.017703 - 20 April 2021

    Abstract Power transformer is one of the more important components of electrical power systems. The early detection of transformer faults increases the power system reliability. Dissolved gas analysis (DGA) is one of the most favorite approaches used for power transformer fault prediction due to its easiness and applicability for online diagnosis. However, the imbalanced, insufficient and overlap of DGA dataset impose a challenge towards powerful and accurate diagnosis. In this work, a novel fault diagnosis for power transformers is introduced based on DGA by using data transformation and six optimized machine learning (OML) methods. Four data… More >

  • Open Access

    ARTICLE

    Swarm-LSTM: Condition Monitoring of Gearbox Fault Diagnosis Based on Hybrid LSTM Deep Neural Network Optimized by Swarm Intelligence Algorithms

    Gopi Krishna Durbhaka1, Barani Selvaraj1, Mamta Mittal2, Tanzila Saba3,*, Amjad Rehman3, Lalit Mohan Goyal4

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 2041-2059, 2021, DOI:10.32604/cmc.2020.013131 - 26 November 2020

    Abstract Nowadays, renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs. Most of the renewable energy sources involve turbines and their operation and maintenance are vital and a difficult task. Condition monitoring and fault diagnosis have seen remarkable and revolutionary up-gradation in approaches, practices and technology during the last decade. Turbines mostly do use a rotating type of machinery and analysis of those signals has been challenging to localize the defect. This paper proposes a new hybrid model wherein multiple swarm intelligence models have More >

  • Open Access

    ARTICLE

    Wind Turbine Drivetrain Expert Fault Detection System: Multivariate Empirical Mode Decomposition based Multi-sensor Fusion with Bayesian Learning Classification

    R. Uma Maheswari1,*, R. Umamaheswari2

    Intelligent Automation & Soft Computing, Vol.26, No.3, pp. 479-488, 2020, DOI:10.32604/iasc.2020.013924

    Abstract To enhance the predictive condition-based maintenance (CBMS), a reliable automatic Drivetrain fault detection technique based on vibration monitoring is proposed. Accelerometer sensors are mounted on a wind turbine drivetrain at different spatial locations to measure the vibration from multiple vibration sources. In this work, multi-channel signals are fused and monocomponent modes of oscillation are reconstructed by the Multivariate Empirical Mode Decomposition (MEMD) Technique. Noise assisted methodology is adapted to palliate the mixing of modes with common frequency scales. The instantaneous amplitude envelope and instantaneous frequency are estimated with the Hilbert transform. Low order and high More >

  • Open Access

    ARTICLE

    Contactless Rail Profile Measurement and Rail Fault Diagnosis Approach Using Featured Pixel Counting

    Gulsah Karaduman*, Mehmet Karakose, Ilhan Aydin, Erhan Akin

    Intelligent Automation & Soft Computing, Vol.26, No.3, pp. 455-463, 2020, DOI:10.32604/iasc.2020.013922

    Abstract The use of railways has continually increased with high-speed trains. The increased speed and usage wear on the rails poses a serious problem. In recent years, to detect wear and cracks in the rails, image-based detection methods have been developed. In this paper, wears on the surface of railheads are detected by contactless image processing and image analysis techniques. The shadow removal algorithm with a minimal entropy method is implemented onto the noise-free images to eliminate the light variations that can occur on the rail. The Hough transform is applied on the noise and shadow More >

  • Open Access

    ARTICLE

    Comparative Study on Tool Fault Diagnosis Methods Using Vibration Signals and Cutting Force Signals by Machine Learning Technique

    Suhas S. Aralikatti1, K. N. Ravikumar1, Hemantha Kumar1,*, H. Shivananda Nayaka1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.14, No.2, pp. 127-145, 2020, DOI:10.32604/sdhm.2020.07595 - 23 June 2020

    Abstract The state of cutting tool determines the quality of surface produced on the machined parts. A faulty tool produces poor surface, inaccurate geometry and non-economic production. Thus, it is necessary to monitor tool condition for a machining process to have superior quality and economic production. In the present study, fault classification of single point cutting tool for hard turning has been carried out by employing machine learning technique. Cutting force and vibration signals were acquired to monitor tool condition during machining. A set of four tooling conditions namely healthy, worn flank, broken insert and extended… More >

  • Open Access

    ARTICLE

    Weak Fault Diagnosis of Rolling Bearing Based on Improved Stochastic Resonance

    Xiaoping Zhao1, 4, Yifei Wang2, *, Yonghong Zhang2, Jiaxin Wu1, Yunqing Shi3

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 571-587, 2020, DOI:10.32604/cmc.2020.06363 - 08 April 2019

    Abstract Stochastic resonance can use noise to enhance weak signals, effectively reducing the effect of noise signals on feature extraction. In order to improve the early fault recognition rate of rolling bearings, and to overcome the shortcomings of lack of interaction in the selection of SR (Stochastic Resonance) method parameters and the lack of validation of the extracted features, an adaptive genetic random resonance early fault diagnosis method for rolling bearings was proposed. compared with the existing methods, the AGSR (Adaptive Genetic Stochastic Resonance) method uses genetic algorithms to optimize the system parameters, and further optimizes More >

  • Open Access

    ARTICLE

    A Performance Fault Diagnosis Method for SaaS Software Based on GBDT Algorithm

    Kun Zhu1, Shi Ying1, *, Nana Zhang1, Rui Wang1, Yutong Wu1, Gongjin Lan2, Xu Wang2

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1161-1185, 2020, DOI:10.32604/cmc.2020.05247

    Abstract SaaS software that provides services through cloud platform has been more widely used nowadays. However, when SaaS software is running, it will suffer from performance fault due to factors such as the software structural design or complex environments. It is a major challenge that how to diagnose software quickly and accurately when the performance fault occurs. For this challenge, we propose a novel performance fault diagnosis method for SaaS software based on GBDT (Gradient Boosting Decision Tree) algorithm. In particular, we leverage the monitoring mean to obtain the performance log and warning log when the… More >

Displaying 61-70 on page 7 of 82. Per Page