Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    REVIEW

    Advanced Feature Selection Techniques in Medical Imaging—A Systematic Literature Review

    Sunawar Khan1, Tehseen Mazhar1,2,*, Naila Sammar Naz1, Fahed Ahmed1, Tariq Shahzad3, Atif Ali4, Muhammad Adnan Khan5,*, Habib Hamam6,7,8,9

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2347-2401, 2025, DOI:10.32604/cmc.2025.066932 - 23 September 2025

    Abstract Feature selection (FS) plays a crucial role in medical imaging by reducing dimensionality, improving computational efficiency, and enhancing diagnostic accuracy. Traditional FS techniques, including filter, wrapper, and embedded methods, have been widely used but often struggle with high-dimensional and heterogeneous medical imaging data. Deep learning-based FS methods, particularly Convolutional Neural Networks (CNNs) and autoencoders, have demonstrated superior performance but lack interpretability. Hybrid approaches that combine classical and deep learning techniques have emerged as a promising solution, offering improved accuracy and explainability. Furthermore, integrating multi-modal imaging data (e.g., Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron… More >

  • Open Access

    ARTICLE

    Optimizing Forecast Accuracy in Cryptocurrency Markets: Evaluating Feature Selection Techniques for Technical Indicators

    Ahmed El Youssefi1, Abdelaaziz Hessane1,2, Imad Zeroual1, Yousef Farhaoui1,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3411-3433, 2025, DOI:10.32604/cmc.2025.063218 - 16 April 2025

    Abstract This study provides a systematic investigation into the influence of feature selection methods on cryptocurrency price forecasting models employing technical indicators. In this work, over 130 technical indicators—covering momentum, volatility, volume, and trend-related technical indicators—are subjected to three distinct feature selection approaches. Specifically, mutual information (MI), recursive feature elimination (RFE), and random forest importance (RFI). By extracting an optimal set of 20 predictors, the proposed framework aims to mitigate redundancy and overfitting while enhancing interpretability. These feature subsets are integrated into support vector regression (SVR), Huber regressors, and k-nearest neighbors (KNN) models to forecast the… More >

  • Open Access

    ARTICLE

    Machine Learning Stroke Prediction in Smart Healthcare: Integrating Fuzzy K-Nearest Neighbor and Artificial Neural Networks with Feature Selection Techniques

    Abdul Ahad1,2, Ira Puspitasari1,3,*, Jiangbin Zheng2, Shamsher Ullah4, Farhan Ullah5, Sheikh Tahir Bakhsh6, Ivan Miguel Pires7,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5115-5134, 2025, DOI:10.32604/cmc.2025.062605 - 06 March 2025

    Abstract This research explores the use of Fuzzy K-Nearest Neighbor (F-KNN) and Artificial Neural Networks (ANN) for predicting heart stroke incidents, focusing on the impact of feature selection methods, specifically Chi-Square and Best First Search (BFS). The study demonstrates that BFS significantly enhances the performance of both classifiers. With BFS preprocessing, the ANN model achieved an impressive accuracy of 97.5%, precision and recall of 97.5%, and an Receiver Operating Characteristics (ROC) area of 97.9%, outperforming the Chi-Square-based ANN, which recorded an accuracy of 91.4%. Similarly, the F-KNN model with BFS achieved an accuracy of 96.3%, precision More >

  • Open Access

    ARTICLE

    Suboptimal Feature Selection Techniques for Effective Malicious Traffic Detection on Lightweight Devices

    So-Eun Jeon1, Ye-Sol Oh1, Yeon-Ji Lee1, Il-Gu Lee1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1669-1687, 2024, DOI:10.32604/cmes.2024.047239 - 20 May 2024

    Abstract With the advancement of wireless network technology, vast amounts of traffic have been generated, and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated. While signature-based detection methods, static analysis, and dynamic analysis techniques have been previously explored for malicious traffic detection, they have limitations in identifying diversified malware traffic patterns. Recent research has been focused on the application of machine learning to detect these patterns. However, applying machine learning to lightweight devices like IoT devices is challenging because of the high computational demands and complexity involved in the learning process. In… More >

  • Open Access

    ARTICLE

    Performance Analysis of Intrusion Detection System in the IoT Environment Using Feature Selection Technique

    Moody Alhanaya, Khalil Hamdi Ateyeh Al-Shqeerat*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3709-3724, 2023, DOI:10.32604/iasc.2023.036856 - 15 March 2023

    Abstract The increasing number of security holes in the Internet of Things (IoT) networks creates a question about the reliability of existing network intrusion detection systems. This problem has led to the developing of a research area focused on improving network-based intrusion detection system (NIDS) technologies. According to the analysis of different businesses, most researchers focus on improving the classification results of NIDS datasets by combining machine learning and feature reduction techniques. However, these techniques are not suitable for every type of network. In light of this, whether the optimal algorithm and feature reduction techniques can… More >

Displaying 1-10 on page 1 of 5. Per Page