Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (402)
  • Open Access

    VIEWPOINT

    Implant surface features as key role on cell behavior

    RAFAEL SCAF DE MOLON1,2, MARTA MARIA ALVES PEREIRA2, ERICA DORIGATTI DE AVILA2

    BIOCELL, Vol.46, No.5, pp. 1151-1156, 2022, DOI:10.32604/biocell.2022.018026 - 06 January 2022

    Abstract It has been recognized that physical and chemical properties of biomaterial surfaces mediate the quality of extracellular matrix (ECM) that may affect cell behaviors. In nature, ECM is a heterogeneous three-dimensional superstructure formed by three major components, glycosaminoglycan, glycoconjugate, and protein, that anchors cellular compartments in tissues and regulates the function and the behavior of cells. Changes in the biointerface alter the quality of ECM and morphology through cell surface receptors, which, in turn, enable it to trigger specific cell signaling and different cellular responses. In fact, a number of strategies have been used to More >

  • Open Access

    ARTICLE

    Android Malware Detection Based on Feature Selection and Weight Measurement

    Huizhong Sun1, Guosheng Xu1,*, Zhimin Wu2, Ruijie Quan3

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 585-600, 2022, DOI:10.32604/iasc.2022.023874 - 05 January 2022

    Abstract With the rapid development of Android devices, Android is currently one of the most popular mobile operating systems. However, it is also believed to be an entry point of many attack vectors. The existing Android malware detection method does not fare well when dealing with complex and intelligent malware applications, especially those based on feature detection systems which have become increasingly elusive. Therefore, we propose a novel feature selection algorithm called frequency differential selection (FDS) and weight measurement for Android malware detection. The purpose is to solve the shortcomings of the existing feature selection algorithms… More >

  • Open Access

    ARTICLE

    Social Networks Fake Account and Fake News Identification with Reliable Deep Learning

    N. Kanagavalli1,*, S. Baghavathi Priya2

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 191-205, 2022, DOI:10.32604/iasc.2022.022720 - 05 January 2022

    Abstract Recent developments of the World Wide Web (WWW) and social networking (Twitter, Instagram, etc.) paves way for data sharing which has never been observed in the human history before. A major security issue in this network is the creation of fake accounts. In addition, the automatic classification of the text article as true or fake is also a crucial process. The ineffectiveness of humans in distinguishing the true and false information exposes the fake news as a risk to credibility, democracy, logical truth, and journalism in government sectors. Besides, the automatic fake news or rumors… More >

  • Open Access

    ARTICLE

    Transferable Features from 1D-Convolutional Network for Industrial Malware Classification

    Liwei Wang1,2,3, Jiankun Sun1,2,3, Xiong Luo1,2,3,*, Xi Yang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 1003-1016, 2022, DOI:10.32604/cmes.2022.018492 - 13 December 2021

    Abstract With the development of information technology, malware threats to the industrial system have become an emergent issue, since various industrial infrastructures have been deeply integrated into our modern works and lives. To identify and classify new malware variants, different types of deep learning models have been widely explored recently. Generally, sufficient data is usually required to achieve a well-trained deep learning classifier with satisfactory generalization ability. However, in current practical applications, an ample supply of data is absent in most specific industrial malware detection scenarios. Transfer learning as an effective approach can be used to More >

  • Open Access

    ARTICLE

    Classification of Elephant Sounds Using Parallel Convolutional Neural Network

    T. Thomas Leonid1,*, R. Jayaparvathy2

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1415-1426, 2022, DOI:10.32604/iasc.2022.021939 - 09 December 2021

    Abstract Human-elephant conflict is the most common problem across elephant habitat Zones across the world. Human elephant conflict (HEC) is due to the migration of elephants from their living habitat to the residential areas of humans in search of water and food. One of the important techniques used to track the movements of elephants is based on the detection of Elephant Voice. Our previous work [] on Elephant Voice Detection to avoid HEC was based on Feature set Extraction using Support Vector Machine (SVM). This research article is an improved continuum of the previous method using… More >

  • Open Access

    ARTICLE

    Citrus Diseases Recognition Using Deep Improved Genetic Algorithm

    Usra Yasmeen1, Muhammad Attique Khan1, Usman Tariq2, Junaid Ali Khan1, Muhammad Asfand E. Yar3, Ch. Avais Hanif4, Senghour Mey5, Yunyoung Nam6,*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3667-3684, 2022, DOI:10.32604/cmc.2022.022264 - 07 December 2021

    Abstract Agriculture is the backbone of each country, and almost 50% of the population is directly involved in farming. In Pakistan, several kinds of fruits are produced and exported the other countries. Citrus is an important fruit, and its production in Pakistan is higher than the other fruits. However, the diseases of citrus fruits such as canker, citrus scab, blight, and a few more impact the quality and quantity of this Fruit. The manual diagnosis of these diseases required an expert person who is always a time-consuming and costly procedure. In the agriculture sector, deep learning… More >

  • Open Access

    ARTICLE

    Skin Lesion Segmentation and Classification Using Conventional and Deep Learning Based Framework

    Amina Bibi1, Muhamamd Attique Khan1, Muhammad Younus Javed1, Usman Tariq2, Byeong-Gwon Kang3, Yunyoung Nam3,*, Reham R. Mostafa4, Rasha H. Sakr5

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2477-2495, 2022, DOI:10.32604/cmc.2022.018917 - 07 December 2021

    Abstract Background: In medical image analysis, the diagnosis of skin lesions remains a challenging task. Skin lesion is a common type of skin cancer that exists worldwide. Dermoscopy is one of the latest technologies used for the diagnosis of skin cancer. Challenges: Many computerized methods have been introduced in the literature to classify skin cancers. However, challenges remain such as imbalanced datasets, low contrast lesions, and the extraction of irrelevant or redundant features. Proposed Work: In this study, a new technique is proposed based on the conventional and deep learning framework. The proposed framework consists of… More >

  • Open Access

    ARTICLE

    Synovial Sarcoma Classification Technique Using Support Vector Machine and Structure Features

    P. Arunachalam1, N. Janakiraman1,*, Arun Kumar Sivaraman2, A. Balasundaram3, Rajiv Vincent2, Sita Rani4, Barnali Dey5, A. Muralidhar2, M. Rajesh2

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 1241-1259, 2022, DOI:10.32604/iasc.2022.022573 - 17 November 2021

    Abstract Digital clinical histopathology technique is used for accurately diagnosing cancer cells and achieving optimal results using Internet of Things (IoT) and blockchain technology. The cell pattern of Synovial Sarcoma (SS) cancer images always appeared as spindle shaped cell (SSC) structures. Identifying the SSC and its prognostic indicator are very crucial problems for computer aided diagnosis, especially in healthcare industry applications. A constructive framework has been proposed for the classification of SSC feature components using Support Vector Machine (SVM) with the assistance of relevant Support Vectors (SVs). This framework used the SS images, and it has… More >

  • Open Access

    ARTICLE

    Hypo-Driver: A Multiview Driver Fatigue and Distraction Level Detection System

    Qaisar Abbas1,*, Mostafa E.A. Ibrahim1,2, Shakir Khan1, Abdul Rauf Baig1

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1999-2007, 2022, DOI:10.32604/cmc.2022.022553 - 03 November 2021

    Abstract Traffic accidents are caused by driver fatigue or distraction in many cases. To prevent accidents, several low-cost hypovigilance (hypo-V) systems were developed in the past based on a multimodal-hybrid (physiological and behavioral) feature set. Similarly in this paper, real-time driver inattention and fatigue (Hypo-Driver) detection system is proposed through multi-view cameras and biosignal sensors to extract hybrid features. The considered features are derived from non-intrusive sensors that are related to the changes in driving behavior and visual facial expressions. To get enhanced visual facial features in uncontrolled environment, three cameras are deployed on multiview points… More >

  • Open Access

    ARTICLE

    An Integrated Deep Learning Framework for Fruits Diseases Classification

    Abdul Majid1, Muhammad Attique Khan1, Majed Alhaisoni2, Muhammad Asfand E. yar3, Usman Tariq4, Nazar Hussain1, Yunyoung Nam5,*, Seifedine Kadry6

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1387-1402, 2022, DOI:10.32604/cmc.2022.017701 - 03 November 2021

    Abstract Agriculture has been an important research area in the field of image processing for the last five years. Diseases affect the quality and quantity of fruits, thereby disrupting the economy of a country. Many computerized techniques have been introduced for detecting and recognizing fruit diseases. However, some issues remain to be addressed, such as irrelevant features and the dimensionality of feature vectors, which increase the computational time of the system. Herein, we propose an integrated deep learning framework for classifying fruit diseases. We consider seven types of fruits, i.e., apple, cherry, blueberry, grapes, peach, citrus,… More >

Displaying 251-260 on page 26 of 402. Per Page