Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (311)
  • Open Access

    ARTICLE

    Deep-Net: Fine-Tuned Deep Neural Network Multi-Features Fusion for Brain Tumor Recognition

    Muhammad Attique Khan1,2, Reham R. Mostafa3, Yu-Dong Zhang2, Jamel Baili4, Majed Alhaisoni5, Usman Tariq6, Junaid Ali Khan1, Ye Jin Kim7, Jaehyuk Cha7,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3029-3047, 2023, DOI:10.32604/cmc.2023.038838

    Abstract Manual diagnosis of brain tumors using magnetic resonance images (MRI) is a hectic process and time-consuming. Also, it always requires an expert person for the diagnosis. Therefore, many computer-controlled methods for diagnosing and classifying brain tumors have been introduced in the literature. This paper proposes a novel multimodal brain tumor classification framework based on two-way deep learning feature extraction and a hybrid feature optimization algorithm. NasNet-Mobile, a pre-trained deep learning model, has been fine-tuned and two-way trained on original and enhanced MRI images. The haze-convolutional neural network (haze-CNN) approach is developed and employed on the original images for contrast enhancement.… More >

  • Open Access

    ARTICLE

    CNN Based Features Extraction and Selection Using EPO Optimizer for Cotton Leaf Diseases Classification

    Mehwish Zafar1, Javeria Amin2, Muhammad Sharif1, Muhammad Almas Anjum3, Seifedine Kadry4,5,6, Jungeun Kim7,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2779-2793, 2023, DOI:10.32604/cmc.2023.035860

    Abstract Worldwide cotton is the most profitable cash crop. Each year the production of this crop suffers because of several diseases. At an early stage, computerized methods are used for disease detection that may reduce the loss in the production of cotton. Although several methods are proposed for the detection of cotton diseases, however, still there are limitations because of low-quality images, size, shape, variations in orientation, and complex background. Due to these factors, there is a need for novel methods for features extraction/selection for the accurate cotton disease classification. Therefore in this research, an optimized features fusion-based model is proposed,… More >

  • Open Access

    ARTICLE

    3-D Gait Identification Utilizing Latent Canonical Covariates Consisting of Gait Features

    Ramiz Gorkem Birdal*, Ahmet Sertbas

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2727-2744, 2023, DOI:10.32604/cmc.2023.032069

    Abstract Biometric gait recognition is a lesser-known but emerging and effective biometric recognition method which enables subjects’ walking patterns to be recognized. Existing research in this area has primarily focused on feature analysis through the extraction of individual features, which captures most of the information but fails to capture subtle variations in gait dynamics. Therefore, a novel feature taxonomy and an approach for deriving a relationship between a function of one set of gait features with another set are introduced. The gait features extracted from body halves divided by anatomical planes on vertical, horizontal, and diagonal axes are grouped to form… More >

  • Open Access

    ARTICLE

    New Fragile Watermarking Technique to Identify Inserted Video Objects Using H.264 and Color Features

    Raheem Ogla1,*, Eman Shakar Mahmood1, Rasha I. Ahmed1, Abdul Monem S. Rahma2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3075-3096, 2023, DOI:10.32604/cmc.2023.039818

    Abstract The transmission of video content over a network raises various issues relating to copyright authenticity, ethics, legality, and privacy. The protection of copyrighted video content is a significant issue in the video industry, and it is essential to find effective solutions to prevent tampering and modification of digital video content during its transmission through digital media. However, there are still many unresolved challenges. This paper aims to address those challenges by proposing a new technique for detecting moving objects in digital videos, which can help prove the credibility of video content by detecting any fake objects inserted by hackers. The… More >

  • Open Access

    PROCEEDINGS

    Structural Damage Identification Using Modal Energy and Improved Hybrid Gradient-Based Optimizer

    Nizar Faisal Alkayem1, Maosen Cao2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09367

    Abstract Structural damage identification is a key engineering technique that attempts to ensure structural reliability. In this regard, one of the major intelligent approaches is the inverse analysis of structural damage using metaheuristics. By considering the recent achievements, an efficient hybrid objective function that combines the modal kinetic energy and modal strain energy is developed. The objective function aims to extract maximum modal information from the structure and overcome noisy conditions. Moreover, the original methods are usually vulnerable to the associated high multimodality and uncertainty of the inverse problem. Therefore, the particle swarm algorithm (PSO) mechanism is combined with another newly… More >

  • Open Access

    ARTICLE

    Predicting the Popularity of Online News Based on the Dynamic Fusion of Multiple Features

    Guohui Song1,2, Yongbin Wang1,*, Jianfei Li1, Hongbin Hu1

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1621-1641, 2023, DOI:10.32604/cmc.2023.040095

    Abstract Predicting the popularity of online news is essential for news providers and recommendation systems. Time series, content and meta-feature are important features in news popularity prediction. However, there is a lack of exploration of how to integrate them effectively into a deep learning model and how effective and valuable they are to the model’s performance. This work proposes a novel deep learning model named Multiple Features Dynamic Fusion (MFDF) for news popularity prediction. For modeling time series, long short-term memory networks and attention-based convolution neural networks are used to capture long-term trends and short-term fluctuations of online news popularity. The… More >

  • Open Access

    ARTICLE

    Deep Facial Emotion Recognition Using Local Features Based on Facial Landmarks for Security System

    Youngeun An, Jimin Lee, EunSang Bak*, Sungbum Pan*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1817-1832, 2023, DOI:10.32604/cmc.2023.039460

    Abstract Emotion recognition based on facial expressions is one of the most critical elements of human-machine interfaces. Most conventional methods for emotion recognition using facial expressions use the entire facial image to extract features and then recognize specific emotions through a pre-trained model. In contrast, this paper proposes a novel feature vector extraction method using the Euclidean distance between the landmarks changing their positions according to facial expressions, especially around the eyes, eyebrows, nose, and mouth. Then, we apply a new classifier using an ensemble network to increase emotion recognition accuracy. The emotion recognition performance was compared with the conventional algorithms… More >

  • Open Access

    ARTICLE

    Role-Based Network Embedding via Quantum Walk with Weighted Features Fusion

    Mingqiang Zhou*, Mengjiao Li, Zhiyuan Qian, Kunpeng Li

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2443-2460, 2023, DOI:10.32604/cmc.2023.038675

    Abstract Role-based network embedding aims to embed role-similar nodes into a similar embedding space, which is widely used in graph mining tasks such as role classification and detection. Roles are sets of nodes in graph networks with similar structural patterns and functions. However, the role-similar nodes may be far away or even disconnected from each other. Meanwhile, the neighborhood node features and noise also affect the result of the role-based network embedding, which are also challenges of current network embedding work. In this paper, we propose a Role-based network Embedding via Quantum walk with weighted Features fusion (REQF), which simultaneously considers… More >

  • Open Access

    ARTICLE

    Developing a Breast Cancer Resistance Protein Substrate Prediction System Using Deep Features and LDA

    Mehdi Hassan1,2, Safdar Ali3, Jin Young Kim2,*, Muhammad Sanaullah4, Hani Alquhayz5, Khushbakht Safdar6

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1643-1663, 2023, DOI:10.32604/cmc.2023.038578

    Abstract Breast cancer resistance protein (BCRP) is an important resistance protein that significantly impacts anticancer drug discovery, treatment, and rehabilitation. Early identification of BCRP substrates is quite a challenging task. This study aims to predict early substrate structure, which can help to optimize anticancer drug development and clinical diagnosis. For this study, a novel intelligent approach-based methodology is developed by modifying the ResNet101 model using transfer learning (TL) for automatic deep feature (DF) extraction followed by classification with linear discriminant analysis algorithm (TLRNDF-LDA). This study utilized structural fingerprints, which are exploited by DF contrary to conventional molecular descriptors. The proposed in… More >

  • Open Access

    ARTICLE

    Circulating tumor cells: Biological features and survival mechanisms

    XIAOFENG LI1, JINYANG ZHENG2, JINFENG ZHU3, XIN HUANG4, HUANHUAN ZHU5, BINGDI CHEN6,*

    BIOCELL, Vol.47, No.8, pp. 1771-1781, 2023, DOI:10.32604/biocell.2023.028343

    Abstract Circulating tumor cells (CTCs) are neoplastic cells that are detached from primary tumors and enter circulation. Enumeration and characterization of CTCs are of significance in cancer diagnosis, prognosis, and treatment monitoring. CTC survival in the bloodstream is a limiting step for the development of metastases in distant organs. Recent technological advances, especially in single-cell molecular analyses have uncovered heterogeneous CTC survival mechanisms. Undergoing epithelial-to-mesenchymal transition (EMT), increasing stem cell-like properties, and forming cell clusters enable CTCs to adapt to the harsh microenvironment of the circulation. Expressing and releasing several immunosuppressive molecules help CTCs escape from anti-cancer immune mechanisms. This review… More >

Displaying 41-50 on page 5 of 311. Per Page