Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Field Application of Mulberry Straw Arch in Ecological Bank Revetment

    Xiaojuan Yu1, Chao Liu1,*, Quan Hua2, Xiaohui Wang2, Yongbin Li1

    Journal of Renewable Materials, Vol.10, No.10, pp. 2607-2621, 2022, DOI:10.32604/jrm.2022.019091

    Abstract With the growing level of awareness and increasing demand for environmental protection, timber pile revetments with significant ecological effects have experienced increasingly wide application in China. The current timber pile revetment system has two problems: continuous dense piles have high construction costs and require large timber consumptions, while the discrete pile-bamboo fence systems have poor retaining effects. Considering these problems, an original revetment structure form is proposed: a discrete pile-mulberry straw arch structure. To investigate the mechanical properties of the mulberry straw, some mechanical tests are conducted on mulberry straw and its arch structure. It is found that the average… More > Graphic Abstract

    Field Application of Mulberry Straw Arch in Ecological Bank Revetment

  • Open Access

    ARTICLE

    Development and Field Application of Phosphogypsum-Based Soil Subgrade Stabilizers

    Hongfei Yue1, Aiguo Fang2, Sudong Hua1,*, Zenghuan Gu3, Yu Jia1, Cheng Yang4

    Journal of Renewable Materials, Vol.10, No.8, pp. 2247-2261, 2022, DOI:10.32604/jrm.2022.018901

    Abstract A phosphogypsum-based subgrade stabilizer (PBSS) was formulated using industrial by-product phosphogypsum (PG), mixed with slag and calcium-silicon-rich active material (GSR). The active powder (AP) was used to modify PBSS, and PBSS-AP was obtained. PBSS and PBSS-AP were each mixed with 10% silty soil, and cement and lime (CAL: 5% lime + 2% cement) were used as the traditional material for comparative experiments. Samples were cured under standard conditions, and tested for unconfined compressive strength (UCS), water stability, volume expansion, and leachate, to explore the stabilization effect of the three solidified materials on silty soil. The results showed that the comprehensive… More >

  • Open Access

    ARTICLE

    Coal Seam Permeability Improvement and CBM Production Enhancement by Enlarged Borehole: Mechanism and Application

    Xiyuan Li1, Peng Chu2,3,*, Zhuang Lu2,3, Yuanyuan Liu2,3, Zibin Zhu2,3, Jin Gao2,3, Xiaoxue Liao2,3, Tao Yang2,3

    Energy Engineering, Vol.118, No.6, pp. 1811-1825, 2021, DOI:10.32604/EE.2021.015751

    Abstract The permeability is a key factor to determine the efficiency of coalbed methane (CBM) production. The borehole enlargement technology using hydraulic and mechanical measures to cut coal is an effective method to increase the coal seam permeability and improve the efficiency of gas drainage. Reasonable design of the layout of boreholes is the prerequisite for efficient and economical gas drainage. In this paper, based on the strain-softening model, the stress and permeability model of the coal seam around the enlarged borehole was built, and based on the dual-medium model, the gas migration model in the coal seam was established. Then… More >

Displaying 1-10 on page 1 of 3. Per Page