Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,375)
  • Open Access

    ARTICLE

    Direct Coupling of Natural Boundary Element and Finite Element on Elastic Plane Problems in Unbounded Domains

    Zhao Huiming1, Dong Zhengzhu1, Chen Jiarui1, Yang Min1

    CMC-Computers, Materials & Continua, Vol.21, No.3, pp. 209-216, 2011, DOI:10.3970/cmc.2011.021.209

    Abstract The advantages of coupling of a natural boundary element method and a finite element method are introduced. Then we discuss the principle of the direct coupling of NBEM and FEM and its implementation. The comparison of the results between the direct coupling method and FEM proves that the direct coupling method is simple, feasible and valid in practice. More >

  • Open Access

    ARTICLE

    Hybrid Finite Element Method Based on Novel General Solutions for Helmholtz-Type Problems

    Zhuo-Jia Fu1,2, Wen Chen1, Qing-Hua Qin2,3

    CMC-Computers, Materials & Continua, Vol.21, No.3, pp. 187-208, 2011, DOI:10.3970/cmc.2011.021.187

    Abstract This paper presents a hybrid finite element model (FEM) with a new type of general solution as interior trial functions, named as HGS-FEM. A variational functional corresponding to the proposed general solution is then constructed for deriving the element stiffness matrix of the proposed element model and the corresponding existence of extremum is verified. Then the assumed intra-element potential field is constructed by a linear combination of novel general solutions at the points on the element boundary under consideration. Furthermore, the independent frame field is introduced to guarantee the intra-element continuity. The present scheme inherits the advantages of hybrid Trefftz… More >

  • Open Access

    ARTICLE

    Stress Distribution in an Infinite Body Containing Two Neighboring Locally Curved Nanofibers

    Surkay D. Akbarov1,2, Resat Kosker3, Nihan T. Cinar3

    CMC-Computers, Materials & Continua, Vol.21, No.2, pp. 119-146, 2011, DOI:10.3970/cmc.2011.021.119

    Abstract In the present paper, the stress distribution in an infinite elastic body containing two neighboring nanofibers is studied. It is assumed that the midlines of the fibers are in the same plane. With respect to the location of the fibers according to each other the co-phase and anti-phase curving cases are considered. At infinity uniformly distributed normal forces act in the direction of the nanofibers, location. The investigations are carried out in the framework of the piecewise homogeneous body model with the use of the three-dimensional geometrically non-linear exact equations of the theory of elasticity. The normal and shear self-equilibrated… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Fluid-Structure Interaction of LNG Prestressed Storage Tank under Seismic Influence

    X. H. Du1, X. P. Shen1

    CMC-Computers, Materials & Continua, Vol.20, No.3, pp. 225-242, 2010, DOI:10.3970/cmc.2010.020.225

    Abstract Aim of this paper is to estimate the integrity of liquefied natural gas (LNG) prestressed storage tank under seismic influence. The coupled Eulerian-Lagrangian (CEL) analysis technique is used to simulate the fluid-structure interaction between LNG and the cylinder of LNG prestressed storage tank. The 3-D model of LNG has been dispersed by Eulerian mesh that is different from traditional analysis method which is called the added mass method. Meanwhile, both of the 3-D models of prestressed rebar and concrete structure are dispersed by Lagrangian mesh. Following conclusions are obtained: 1) Natural frequency of the whole model has been obtained by… More >

  • Open Access

    ARTICLE

    A Case Study on Mud-Weight Design with Finite-Element Method for Subsalt Wells

    X.P. Shen, A. Diaz1, T. Sheehy2

    CMC-Computers, Materials & Continua, Vol.20, No.3, pp. 205-224, 2010, DOI:10.3970/cmc.2010.020.205

    Abstract This paper presents a case study for the design of a mud-weight window (MWW) with three-dimensional (3-D), finite-element (FE) tools for subsalt wells. The trajectory of the target well penetrates a 7 km thick salt body. A numerical scheme has been proposed for calculating the shear failure gradient (SFG) and fracture gradient (FG) with 3-D FE software. User subroutines have been developed to address non-uniform pore-pressure distribution. A series of FE calculations were performed to obtain the MWW of the target wellbore, which consists of the SFG and FG for the subsalt sections. Although no reverse faulting structure exists in… More >

  • Open Access

    ARTICLE

    Numerical Formulations for the Prediction of Deformation, Strain and Stress of Un-patterned ETFE Cushions

    N.J. Bartle1, P.D. Gosling1

    CMC-Computers, Materials & Continua, Vol.20, No.1, pp. 19-62, 2010, DOI:10.3970/cmc.2010.020.019

    Abstract ETFE cushions are increasingly being used to form high-profile facades and structural forms. This investigation aims to extend an analytical theory of large deformation in order to predict the shape and stress distributions of an un-patterned square ETFE cushion without the need to resort to discretised numerical methods. In order to assess the validity of the theoretical procedure a prototype cushion has been analysed using a finite element simulation. The theoretical procedure is also compared with alternative approximate equations proposed for the design of ETFE cushions. More >

  • Open Access

    ARTICLE

    Indentation Load-Displacement Relations for the Spherical Indentation of Elastic Film/Substrate Structures

    S. N.V.R.K. Kurapati1, Y. C. Lu1, F. Yang2

    CMC-Computers, Materials & Continua, Vol.20, No.1, pp. 1-18, 2010, DOI:10.3970/cmc.2010.020.001

    Abstract The spherical indentation of elastic film /substrate structures is analyzed using the finite element method. The load-displacement curves of the film /substrate structures of various configurations are obtained and analyzed. A generalized power law relation is established, which can be used to analyze the load-displacement curve of elastic film /substrate systems under spherical indentations. The indentation load is dependent on the modulus ratio of the film to the substrate and film thickness. A semi-analytical expression for the power of the power law relation is also obtained as a function of the normalized film thickness and normalized film modulus, which can… More >

  • Open Access

    ARTICLE

    Dynamic Properties of Cortical Bone Tissue: Izod Tests and Numerical Study

    Adel A. Abdel-Wahab1, Angelo Maligno1, Vadim V. Silberschmidt1

    CMC-Computers, Materials & Continua, Vol.19, No.3, pp. 217-238, 2010, DOI:10.3970/cmc.2010.019.217

    Abstract Bone is the principal structural component of a skeleton: it assists the load-bearing framework of a living body. Structural integrity of this component is important; understanding of its mechanical behaviour up to failure is necessary for prevention and diagnostic of trauma. In dynamic events such as traumatic falls, involvement in car crash and sports injuries, bone can be exposed to loads exceeding its structural strength and/or fracture toughness. By developing adequate numerical models to predict and describe its deformation and fracture behaviour up to fracture, a detailed study of reasons for, and ways to prevent or treatment methods of, bone… More >

  • Open Access

    ARTICLE

    Effects of Loading Conditions on Deformation Process in Indentation

    M. Demiral, A. Roy, V. V. Silberschmidt1

    CMC-Computers, Materials & Continua, Vol.19, No.2, pp. 199-216, 2010, DOI:10.3970/cmc.2010.019.199

    Abstract Static indentation experiments are typically performed to characterize the mechanical properties of a material of interest by a rigid indenter of known geometry to various depths. In contrast, dynamic indentation of materials has not been fully studied. Evaluating material performance under dynamic loading conditions is a challenge and we demonstrate that various modelling schemes may be appropriate for different flavours of dynamic indentation. In order to compare underlying thermo-mechanics and deformation processes in a static and dynamic indentation process, indentation of a rigid indenter into a workpiece to a fixed chosen penetration is extensively studied. A nonlinear strain rate and… More >

  • Open Access

    ARTICLE

    RMVT- and PVD-Based Finite Layer Methods for the Quasi-3D Free Vibration Analysis of Multilayered Composite and FGM Plates

    Chih-Ping Wu1,2, Hao-Yuan Li2

    CMC-Computers, Materials & Continua, Vol.19, No.2, pp. 155-198, 2010, DOI:10.3970/cmc.2010.019.155

    Abstract The Reissner mixed variational theorem (RMVT)- and principle of virtual displacements (PVD)-based finite layer methods (FLMs) are developed for the quasi-three-dimensional (3D) free vibration analysis of simply-supported, multilayered composite and functionally graded material (FGM) plates. The material properties of the FGM layers are assumed to obey either an exponent-law exponentially varied with the thickness coordinate or the power-law distributions of the volume fractions of the constituents. In these formulations, the plate is divided into a number of finite layers, where the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-plane variations of the field variables of… More >

Displaying 1341-1350 on page 135 of 1375. Per Page