Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    A finite-volume method based on compact local integrated radial basis function approximations for second-order differential problems

    T.-T. Hoang-Trieu1, N. Mai-Duy1, C.-D. Tran1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.6, pp. 485-516, 2013, DOI:10.3970/cmes.2013.091.485

    Abstract In this paper, compact local integrated radial basis function (IRBF) stencils reported in [Mai-Duy and Tran-Cong (2011) Journal of Computational Physics 230(12), 4772-4794] are introduced into the finite-volume / subregion - collocation formulation for the discretisation of second-order differential problems defined on rectangular and non-rectangular domains. The problem domain is simply represented by a Cartesian grid, over which overlapping compact local IRBF stencils are utilised to approximate the field variable and its derivatives. The governing differential equation is integrated over non-overlapping control volumes associated with grid nodes, and the divergence theorem is then applied to convert volume integrals into surface/line… More >

  • Open Access

    ARTICLE

    A Hydrodynamic Assessment of a Remotely Operated Underwater Vehicle Based on Computational Fluid Dynamic – Part 1 – Numerical Simulation

    Christian Boe, Jose Rodriguez, Carlos Plazaola, Ilka Banfield A maly Fong, Rony Caballero, Adan Vega

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.2, pp. 165-177, 2013, DOI:10.3970/cmes.2013.090.165

    Abstract The authors have developed a remote operate vehicle (ROV) that allow carried out highly risky task, in confined space such as inside of submerged sewers and pipes systems, areas were commercial ROV may not provide good performing. In addition, this ROV is low cost. This paper analyses based on the computational fluid dynamic the hydrodynamic performance of this ROV. The first part of the paper presents the theoretical approach and introduces the finite volume model developed in order to complete the study. Results of the model compare with published research shows good agreement. The second (forthcoming) part of the paper… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Gas-assisted Injection Molding Process for A Door Handle

    Qiang Li, Jie Ouyang1, Xuejuan Li2, Guorong Wu2, Binxin Yang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.74, No.3&4, pp. 247-268, 2011, DOI:10.3970/cmes.2011.074.247

    Abstract A unified mathematical model is proposed to predict the short shot, primary and secondary gas penetration phenomenon in gas-assisted injection molding (GAIM) process, where the Cross-WLF model and two-domain modified Tait equation are employed to simulate the melt viscosity and density in the whole process, respectively. The governing equations of two-phase flows including gas, air and polymer melt are solved using finite volume method with SIMPLEC technology. At first, two kinds of U-shaped gas channels are modeled, where the shape corner and generous corner cases are studied. At last, as a case study, the short shot, primary and secondary gas… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Melt Filling and Gas Penetration in Gas Assisted Injection Molding

    Qiang Li1, Jie Ouyang1, Guorong Wu1, Xiaoyang Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.3&4, pp. 215-232, 2011, DOI:10.32604/cmes.2011.082.215

    Abstract The governing equations of two-phase flows including gas and polymer melt are presented, which are solved using finite volume and domain extension methods with SIMPLEC technology. The melt filling and primary gas penetration in gas-assisted injection molding (GAIM) process are simulated, where the Cross-viscosity model is employed to describe the melt rheological behavior, and the CLSVOF(coupled Level Set and Volume of fluid) method is employed to capture the moving interfaces. In order to test and verify the coupled methods, melt filling in a rectangular plate with an insert is simulated, and the numerical results are in good agreement with those… More >

  • Open Access

    ARTICLE

    On application of the Stochastic Finite Volume Method in Navier-Stokes problems

    Marcin Kamiński1, Rafał Leszek Ossowski1

    CMES-Computer Modeling in Engineering & Sciences, Vol.81, No.3&4, pp. 311-334, 2011, DOI:10.3970/cmes.2011.081.311

    Abstract The main aim of this article is numerical solution of the fully coupled Navier-Stokes equations with Gaussian random parameters. It is provided thanks to the specially adopted Finite Volume Method, modified using the generalized stochastic perturbation technique. This Stochastic Finite Volume Method is applied to model 3D problem with uncertainty in liquid viscosity and a coefficient of the heat conduction, separately. Probabilistic moments and characteristics of up to the fourth order are determined with the use of the Response Function Method realized numerically via the polynomial inpterpolation. Although mathematical formulation of the SFVM has been proposed in addition to the… More >

  • Open Access

    ARTICLE

    Mean Densities in Dynamic MathematicalTwo-phase Flow Models

    J. Bonilla1, L.J. Yebra1, S. Dormido2

    CMES-Computer Modeling in Engineering & Sciences, Vol.67, No.1, pp. 13-38, 2010, DOI:10.3970/cmes.2010.067.013

    Abstract This paper presents and discusses a mean densities method applied to a steam-water two-phase flow mathematical model which uses a finite volume method and a staggered grid for discretizing a rigid volume in control volumes, where the thermodynamic properties are calculated. This method is based on the concepts of uniform pressure among all the control volumes and mean density in each control volume, allowing smooth thermodynamic properties, hence avoiding discontinuity at phase boundaries. This method wipes out the chattering problem due to the continuous and differentiable modelling of density and its partial derivatives, which leads to faster simulations and increases… More >

  • Open Access

    ARTICLE

    Modeling and Simulation of Fiber Reinforced Polymer Mold Filling Process by Level Set Method

    Binxin Yang1, Jie Ouyang1, Tao Jiang1, Chuntai Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.3, pp. 191-222, 2010, DOI:10.3970/cmes.2010.063.191

    Abstract A gas-solid-liquid three-phase model is proposed for fiber reinforced composites mold filling process. The fluid flow is described in Eulerian coordinate while the dynamics of fibers is described in Langrangian coordinate. The interaction of fluid flow and fibers are enclosed in the model. The influence of fluid flow on fibers is described by the resultant forces imposed on fibers and the influence of fibers on fluid flow is described by the momentum exchange source term in the model. A finite volume method coupled with a level set method for viscoelastic-Newtonian fluid flow is used to solve the model. The direct… More >

  • Open Access

    ARTICLE

    Computation of the Turbulent Flow in a Square Duct Using a Cubic Low-Reynolds Stress Model

    H. Naj1,2,3, G. Mompean1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.2, pp. 181-206, 2009, DOI:10.3970/cmes.2009.053.181

    Abstract The aim of this work is to predict numerically the turbulent flow through a straight square duct using a nonlinear stress-strain model. The paper considers the application of the Craft et al.'s model [Craft, Launder, and Suga (1996)] to the case of turbulent incompressible flow in a straight square duct. In order to handle wall proximity effects, damping functions are introduced. Using a priori and a posteriori investigations, we show the performance of this model to predict such flows. The analysis of the flow anisotropy is made using the anisotropy-invariant map proposed by Lumley and Newman [Lumley and Newman (1977)].… More >

  • Open Access

    ARTICLE

    Derivation of a Bilayer Model for Shallow Water Equations with Viscosity. Numerical Validation

    G. Narbona-Reina1, J.D.D. Zabsonré2, E.D. Fernández-Nieto1, D. Bresch3

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.1, pp. 27-72, 2009, DOI:10.3970/cmes.2009.043.027

    Abstract In this work we present a new two-dimensional bilayer Shallow-Water model including viscosity and friction effects on the bottom and interface level. It is obtained following [Gerbeau and Perthame (2001)] from an asymptotic analysis of non-dimensional and incompressible Navier-Stokes equations with hydrostatic approximation. In order to obtain the viscosity effects into the model we must have into account a second order approximation. To evaluate this model we perform two numerical tests consisting of an internal dam-break problem for both, one and two dimensional cases. In the first one we make a comparison between the model obtained and the Navier-Stokes simulation. More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear Problems with Large Deformations and Rotations

    Z. D. Han1, A. M. Rajendran2, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.1, pp. 1-12, 2005, DOI:10.3970/cmes.2005.010.001

    Abstract A nonlinear formulation of the Meshless Local Petrov-Galerkin (MLPG) finite-volume mixed method is developed for the large deformation analysis of static and dynamic problems. In the present MLPG large deformation formulation, the velocity gradients are interpolated independently, to avoid the time consuming differentiations of the shape functions at all integration points. The nodal values of velocity gradients are expressed in terms of the independently interpolated nodal values of displacements (or velocities), by enforcing the compatibility conditions directly at the nodal points. For validating the present large deformation MLPG formulation, two example problems are considered: 1) large deformations and rotations of… More >

Displaying 11-20 on page 2 of 26. Per Page