Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (164)
  • Open Access

    ARTICLE

    A Firefly Algorithm-Optimized CNN–BiLSTM Model for Automated Detection of Bone Cancer and Marrow Cell Abnormalities

    Ishaani Priyadarshini*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072343 - 12 January 2026

    Abstract Early and accurate detection of bone cancer and marrow cell abnormalities is critical for timely intervention and improved patient outcomes. This paper proposes a novel hybrid deep learning framework that integrates a Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory (BiLSTM) architecture, optimized using the Firefly Optimization algorithm (FO). The proposed CNN-BiLSTM-FO model is tailored for structured biomedical data, capturing both local patterns and sequential dependencies in diagnostic features, while the Firefly Algorithm fine-tunes key hyperparameters to maximize predictive performance. The approach is evaluated on two benchmark biomedical datasets: one comprising diagnostic data… More >

  • Open Access

    ARTICLE

    CCLNet: An End-to-End Lightweight Network for Small-Target Forest Fire Detection in UAV Imagery

    Qian Yu1,2, Gui Zhang2,*, Ying Wang1, Xin Wu2, Jiangshu Xiao2, Wenbing Kuang1, Juan Zhang2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072172 - 12 January 2026

    Abstract Detecting small forest fire targets in unmanned aerial vehicle (UAV) images is difficult, as flames typically cover only a very limited portion of the visual scene. This study proposes Context-guided Compact Lightweight Network (CCLNet), an end-to-end lightweight model designed to detect small forest fire targets while ensuring efficient inference on devices with constrained computational resources. CCLNet employs a three-stage network architecture. Its key components include three modules. C3F-Convolutional Gated Linear Unit (C3F-CGLU) performs selective local feature extraction while preserving fine-grained high-frequency flame details. Context-Guided Feature Fusion Module (CGFM) replaces plain concatenation with triplet-attention interactions to… More >

  • Open Access

    ARTICLE

    LP-YOLO: Enhanced Smoke and Fire Detection via Self-Attention and Feature Pyramid Integration

    Qing Long1, Bing Yi2, Haiqiao Liu3,*, Zhiling Peng1, Xiang Liu1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072058 - 12 January 2026

    Abstract Accurate detection of smoke and fire sources is critical for early fire warning and environmental monitoring. However, conventional detection approaches are highly susceptible to noise, illumination variations, and complex environmental conditions, which often reduce detection accuracy and real-time performance. To address these limitations, we propose Lightweight and Precise YOLO (LP-YOLO), a high-precision detection framework that integrates a self-attention mechanism with a feature pyramid, built upon YOLOv8. First, to overcome the restricted receptive field and parameter redundancy of conventional Convolutional Neural Networks (CNNs), we design an enhanced backbone based on Wavelet Convolutions (WTConv), which expands the… More >

  • Open Access

    ARTICLE

    A Temperature-Indexed Concrete Damage Plasticity Model Incorporating Bond-Slip Mechanism for Thermo-Mechanical Analysis of Reinforced Concrete Structures

    Wu Feng1,2,*, Tengku Anita Raja Hussin1, Xu Yang3

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071664 - 08 January 2026

    Abstract This study investigates the thermo–mechanical behavior of C40 concrete and reinforced concrete subjected to elevated temperatures up to 700°C by integrating experimental testing and advanced numerical modeling. A temperature-indexed Concrete Damage Plasticity (CDP) framework incorporating bond–slip effects was developed in Abaqus to capture both global stress–strain responses and localized damage evolution. Uniaxial compression tests on thermally exposed cylinders provided residual strength data and failure observations for model calibration and validation. Results demonstrated a distinct two-stage degradation regime: moderate stiffness and strength reduction up to ~400°C, followed by sharp deterioration beyond 500°C–600°C, with residual capacity at… More >

  • Open Access

    ARTICLE

    Evaluation of the Failure Impact of Jet Fire from Natural Gas Leakage on Parallel Pipelines

    Zezhi Wen1, Kai Zhang1, Shanlin Liang2, Liqiong Chen1,*, Zijian Xiong1

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.066408 - 08 January 2026

    Abstract Maintaining the structural integrity of parallel natural gas pipelines during leakage-induced jet fires remains a critical engineering challenge. Existing methods often fail to account for the complex interactions among heat transfer, material behavior, and pipeline geometry, which can lead to overly simplified and potentially unsafe assessments. To address these limitations, this study develops a multiphysics approach that integrates small-orifice leakage theory with detailed thermo-fluid-structural simulations. The proposed framework contributes to a more accurate failure analysis through three main components: (1) coupled modeling that tracks transient heat flow and stress development as fire conditions evolve; (2)… More >

  • Open Access

    ARTICLE

    An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning

    Kemahyanto Exaudi1,2, Deris Stiawan3,*, Bhakti Yudho Suprapto1, Hanif Fakhrurroja4, Mohd. Yazid Idris5, Tami A. Alghamdi6, Rahmat Budiarto6

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.069377 - 10 November 2025

    Abstract Sudden wildfires cause significant global ecological damage. While satellite imagery has advanced early fire detection and mitigation, image-based systems face limitations including high false alarm rates, visual obstructions, and substantial computational demands, especially in complex forest terrains. To address these challenges, this study proposes a novel forest fire detection model utilizing audio classification and machine learning. We developed an audio-based pipeline using real-world environmental sound recordings. Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network (CNN), enabling the capture of distinctive fire acoustic signatures (e.g., crackling, roaring) that are minimally impacted by… More >

  • Open Access

    ARTICLE

    Study on Flame Shape and Induced Wind Velocity in Inclined Tunnel Fires with One Portal Sealed

    Shengzhong Zhao1, Daiyan Chen1, Han Zhang1,2,*, Junhao Yu1, Lin Xu1, Zhaoyi Zhuang1, Fei Wang1,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1907-1932, 2025, DOI:10.32604/fhmt.2025.071910 - 31 December 2025

    Abstract A sealed portal could significantly alter the flame shape and smoke flow characteristics in inclined tunnel fires. In inclined tunnels, two typical sealing conditions could be defined, namely the upper portal sealed and the lower portal sealed. In this study, the effects of tunnel slope on flame shape, flame length, along with smoke mass flow rate and induced velocity at the tunnel portal, are numerically investigated. The results show that, in all scenarios, flames initially rise vertically but tilt toward the sealed portal during the quasi-steady stage, with the largest tilt angle observed in tunnels… More >

  • Open Access

    ARTICLE

    XGBoost-Based Active Learning for Wildfire Risk Prediction

    Hongrong Wang1,2, Hang Geng1,*, Jing Yuan1, Wen Zhang2, Hanmin Sheng1, Qiuhua Wang3, Xinjian Li4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3701-3721, 2025, DOI:10.32604/cmes.2025.073513 - 23 December 2025

    Abstract Machine learning has emerged as a key approach in wildfire risk prediction research. However, in practical applications, the scarcity of data for specific regions often hinders model performance, with models trained on region-specific data struggling to generalize due to differences in data distributions. While traditional methods based on expert knowledge tend to generalize better across regions, they are limited in leveraging multi-source data effectively, resulting in suboptimal predictive accuracy. This paper addresses this challenge by exploring how accumulated domain expertise in wildfire prediction can reduce model reliance on large volumes of high-quality data. An active More >

  • Open Access

    ARTICLE

    Sustainable Egg Packaging Waste Biocomposites Derived from Recycled Wood Fibers and Fungal Filaments

    Ilze Irbe1,*, Laura Andze1, Inese Filipova1,2

    Journal of Renewable Materials, Vol.13, No.11, pp. 2139-2154, 2025, DOI:10.32604/jrm.2025.02025-0107 - 24 November 2025

    Abstract Growing environmental concerns and the need for sustainable alternatives to synthetic materials have led to increased interest in bio-based composites. This study investigates the development and characterization of sustainable egg packaging waste (EPW) biocomposites derived from recycled wood fibers and fungal mycelium filaments as a natural binder. Three formulations were prepared using EPW as the primary substrate, with and without the addition of hemp shives and sawdust as co-substrates. The composites were evaluated for granulometry, density, mechanical strength, hygroscopic behavior, thermal conductivity, and fire performance using cone calorimetry. Biocomposites, composed exclusively of egg packaging waste,… More >

  • Open Access

    ARTICLE

    Enhanced Fire Detection System for Blind and Visually Challenged People Using Artificial Intelligence with Deep Convolutional Neural Networks

    Fahd N. Al-Wesabi1,*, Hamad Almansour2, Huda G. Iskandar3,4, Ishfaq Yaseen5

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5765-5787, 2025, DOI:10.32604/cmc.2025.067571 - 23 October 2025

    Abstract Earlier notification and fire detection methods provide safety information and fire prevention to blind and visually impaired (BVI) individuals in a limited timeframe in the event of emergencies, particularly in enclosed areas. Fire detection becomes crucial as it directly impacts human safety and the environment. While modern technology requires precise techniques for early detection to prevent damage and loss, few research has focused on artificial intelligence (AI)-based early fire alert systems for BVI individuals in indoor settings. To prevent such fire incidents, it is crucial to identify fires accurately and promptly, and alert BVI personnel… More >

Displaying 1-10 on page 1 of 164. Per Page