Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (101)
  • Open Access

    ARTICLE

    Vortex-Induced Vibration Prediction in Floating Structures via Unstructured CFD and Attention-Based Convolutional Modeling

    Yan Li1,2,*, Yibin Wu1,2, Bo Zhang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 2905-2925, 2025, DOI:10.32604/fdmp.2025.072979 - 31 December 2025

    Abstract Traditional Computational Fluid Dynamics (CFD) simulations are computationally expensive when applied to complex fluid–structure interaction problems and often struggle to capture the essential flow features governing vortex-induced vibrations (VIV) of floating structures. To overcome these limitations, this study develops a hybrid framework that integrates high-fidelity CFD modeling with deep learning techniques to enhance the accuracy and efficiency of VIV response prediction. First, an unstructured finite-volume fluid–structure coupling model is established to generate high-resolution flow field data and extract multi-component time-series feature tensors. These tensors serve as inputs to a Squeeze-and-Excitation Convolutional Neural Network (SE-CNN), which… More >

  • Open Access

    ARTICLE

    Influence of Nozzle Geometry and Operating Parameters on High-Pressure Water Jets

    Yuxin Wang1, Youjiang Wang2, Jieping Wang2, Chao Zhang1,*, Fanguang Meng3, Linhua Zhang1, Yongxing Song1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2761-2777, 2025, DOI:10.32604/fdmp.2025.072236 - 01 December 2025

    Abstract High-pressure water jet technology has emerged as a highly effective method for removing industrial-scale deposits from pipelines, offering a clean, efficient, and environmentally sustainable alternative to conventional mechanical or chemical cleaning techniques. Among the many parameters influencing its performance, the geometry of the nozzle plays a decisive role in governing jet coherence, impact pressure distribution, and overall cleaning efficiency. In this study, a comprehensive numerical and experimental investigation is conducted to elucidate the influence of nozzle geometry on the behavior of high-pressure water jets. Using Computational Fluid Dynamics (CFD) simulations based on the Volume of… More >

  • Open Access

    ARTICLE

    CFD Analysis of Corrugated Plate Designs to Improve Heat Transfer Efficiency in Plate Heat Exchangers

    Kashif Ahmed Soomro1,2,3,*, Rahool Rai1,3,4, S. R. Qureshi2, Sudhakar Kumarasamy4,5,6, Abdul Hameed Memon1, Rabiya Jamil1

    Energy Engineering, Vol.122, No.12, pp. 4857-4872, 2025, DOI:10.32604/ee.2025.069847 - 27 November 2025

    Abstract Plate heat exchangers suffer from significant energy losses, which adversely affect the overall efficiency of thermal systems. To address this challenge, various heat transfer enhancement techniques have been investigated. Notably, the incorporation of surface corrugations is widely recognized as both effective and practical. Chevron corrugation is the most employed design. However, there remains a need to investigate alternative geometries that may offer superior performance. This study aims to find a novel corrugation design by conducting a comparative CFD analysis of flat, square, chevron, and cylindrical corrugated surfaces, assessing their impact on heat transfer enhancement within… More > Graphic Abstract

    CFD Analysis of Corrugated Plate Designs to Improve Heat Transfer Efficiency in Plate Heat Exchangers

  • Open Access

    PROCEEDINGS

    Developing a New Computational Fluid Dynamics Model for Friction Stir Welding of Al/Mg Alloys by Explicitly Including Intermetallic Compound Phase

    Chengle Yang, Qingyu Shi, Gaoqiang Chen*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011530

    Abstract The dissimilar friction stir welding (FSW) of aluminum (Al) and magnesium (Mg) alloys occurs at relatively low temperatures, but how the plastic flow happens under these conditions remains unclear. In this study, a computational fluid dynamics (CFD) model was developed to investigate the thermo-mechanical-flow coupled material behavior during the dissimilar friction stir welding of AA6061-T6 Al alloy and AZ31B Mg alloy. The present work established a generation model and a constitutive model for intermetallic compound (IMC) in welding process. An iso-stress mixing model was utilized to determine the viscosity of the Al-Mg-IMC mixture by volume… More >

  • Open Access

    REVIEW

    Fluid Dynamics of Quantum Dot Inks: Non-Newtonian Behavior and Precision Control in Advanced Printing

    Zhen Gong#, Siyu Chen#, Zhenyu Feng, Dawang Li, Le Zhang, Meiting Xu, Yanping Lin, Huixin Huang, Dan Jiang, Caiyi Wu, Yichun Ke, Zhonghui Du*, Ning Zhao, Hongbo Liu*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2101-2129, 2025, DOI:10.32604/fdmp.2025.068946 - 30 September 2025

    Abstract Quantum dot inks (QDIs) represent an emerging functional material that integrates nanotechnology and fluid engineering, demonstrating significant application potential in flexible optoelectronics and high-color gamut displays. Their wide applicability is due to a unique quantum confinement effect that enables precise spectral tunability and solution-processable properties. However, the complex fluid dynamics associated with QDIs at micro-/nano-scales severely limit the accuracy of inkjet printing and pattern deposition. This review systematically addresses recent advances in the hydrodynamics of QDIs, establishing scientific mechanisms and key technical breakthroughs from an interdisciplinary perspective. Current research has focused on three optimization directions:… More >

  • Open Access

    ARTICLE

    CFD Simulation of Passenger Car Aerodynamics and Body Parameter Optimization

    Jichao Li, Xuexin Zhu, Cong Zhang, Shiwang Dang, Guang Chen*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2305-2329, 2025, DOI:10.32604/fdmp.2025.067087 - 30 September 2025

    Abstract The rapid advancement of technology and the increasing speed of vehicles have led to a substantial rise in energy consumption and growing concern over environmental pollution. Beyond the promotion of new energy vehicles, reducing aerodynamic drag remains a critical strategy for improving energy efficiency and lowering emissions. This study investigates the influence of key geometric parameters on the aerodynamic drag of vehicles. A parametric vehicle model was developed, and computational fluid dynamics (CFD) simulations were conducted to analyse variations in the drag coefficient () and pressure distribution across different design configurations. The results reveal that More >

  • Open Access

    ARTICLE

    Numerical Study on the Icing Characteristics of Flat Plates and Its Influencing Factors

    Jin Zhu1,2,*, Yanxin Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2849-2872, 2025, DOI:10.32604/cmes.2025.070287 - 30 September 2025

    Abstract Ice accretion on structures such as aircraft wings and wind turbine blades poses serious risks to aerodynamic performance and operational safety, particularly in cold and humid environments. This study conducts numerical simulations of ice formation on thin flat plates using CFD and FENSAP-ICE, exploring how air temperature, wind velocity, and angle of attack (AOA) affect icing behavior and aerodynamic characteristics. Results indicate that ice thickness increases linearly over time. Rime ice forms at low temperatures due to immediate droplet freezing, whereas glaze ice develops at higher temperatures when a water film forms and subsequently refreezes… More >

  • Open Access

    ARTICLE

    Ventilation Velocity vs. Airborne Infection Risk: A Combined CFD and Field Study of CO2 and Viral Aerosols

    Chuhan Zhao1,*, Souad Morsli2, Laurent Caramelle3, Mohammed El Ganaoui3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 2001-2025, 2025, DOI:10.32604/fdmp.2025.068093 - 12 September 2025

    Abstract Carbon dioxide (CO2) is often monitored as a convenient yardstick for indoor air safety, yet its ability to stand in for pathogen-laden aerosols has never been settled. To probe the question, we reproduced an open-plan office at full scale (7.2 m 5.2 m 2.8 m) and introduced a breathing plume that carried 4% CO2, together with a polydisperse aerosol spanning 0.5–10 m (1320 particles s−1). Inlet air was supplied at 0.7, 1.4, and 2.1 m s−1, and the resulting fields were simulated with a Realisable – RANS model coupled to Lagrangian particle tracking. Nine strategically placed probes… More >

  • Open Access

    REVIEW

    The Convergence of Computational Fluid Dynamics and Machine Learning in Oncology: A Review

    Wan Mohd Faizal1,2,*, Nurul Musfirah Mazlan1,*, Shazril Imran Shaukat3,4, Chu Yee Khor2, Ab Hadi Mohd Haidiezul2, Abdul Khadir Mohamad Syafiq2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1335-1369, 2025, DOI:10.32604/cmes.2025.068660 - 31 August 2025

    Abstract Conventional oncology faces challenges such as suboptimal drug delivery, tumor heterogeneity, and therapeutic resistance, indicating a need for more personalized, and mechanistically grounded and predictive treatment strategies. This review explores the convergence of Computational Fluid Dynamics (CFD) and Machine Learning (ML) as an integrated framework to address these issues in modern cancer therapy. The paper discusses recent advancements where CFD models simulate complex tumor microenvironmental conditions, like interstitial fluid pressure (IFP) and drug perfusion, and ML enhances simulation workflows, automates image-based segmentation, and enhances predictive accuracy. The synergy between CFD and ML improves scalability and More >

  • Open Access

    REVIEW

    A Review of Computational Fluid Dynamics Techniques and Methodologies in Vertical Axis Wind Turbine Development

    Ahmad Fazlizan1,*, Wan Khairul Muzammil2, Najm Addin Al-Khawlani1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1371-1437, 2025, DOI:10.32604/cmes.2025.067854 - 31 August 2025

    Abstract This review provides a comprehensive and systematic examination of Computational Fluid Dynamics (CFD) techniques and methodologies applied to the development of Vertical Axis Wind Turbines (VAWTs). Although VAWTs offer significant advantages for urban wind applications, such as omnidirectional wind capture and a compact, ground-accessible design, they face substantial aerodynamic challenges, including dynamic stall, blade–wake interactions, and continuously varying angles of attack throughout their rotation. The review critically evaluates how CFD has been leveraged to address these challenges, detailing the modelling frameworks, simulation setups, mesh strategies, turbulence models, and boundary condition treatments adopted in the literature.… More >

Displaying 1-10 on page 1 of 101. Per Page