Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (50)
  • Open Access

    ARTICLE

    Real-Time Multi Fractal Trust Evaluation Model for Efficient Intrusion Detection in Cloud

    S. Priya1, R. S. Ponmagal2,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1895-1907, 2023, DOI:10.32604/iasc.2023.039814 - 21 June 2023

    Abstract Handling service access in a cloud environment has been identified as a critical challenge in the modern internet world due to the increased rate of intrusion attacks. To address such threats towards cloud services, numerous techniques exist that mitigate the service threats according to different metrics. The rule-based approaches are unsuitable for new threats, whereas trust-based systems estimate trust value based on behavior, flow, and other features. However, the methods suffer from mitigating intrusion attacks at a higher rate. This article presents a novel Multi Fractal Trust Evaluation Model (MFTEM) to overcome these deficiencies. The… More >

  • Open Access

    ARTICLE

    Forecasting Energy Consumption Using a Novel Hybrid Dipper Throated Optimization and Stochastic Fractal Search Algorithm

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2, Amel Ali Alhussan1,*, Marwa M. Eid3

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2117-2132, 2023, DOI:10.32604/iasc.2023.038811 - 21 June 2023

    Abstract The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments. Meanwhile, the accurate prediction can be realized using the recent advances in machine learning and predictive models. This research proposes a novel approach for energy consumption forecasting based on a new optimization algorithm and a new forecasting model consisting of a set of long short-term memory (LSTM) units. The proposed optimization algorithm is used to optimize the parameters of the LSTM-based model to boost its forecasting accuracy. This optimization algorithm is based on the recently emerged… More >

  • Open Access

    ARTICLE

    Evaluation of Water Transfer Capacity of Poplar with Pectinase Treated under the Solar Interface Evaporation

    Wei Xiong1,2, Dagang Li1,*, Peixing Wei2, Lin Wang2, Qian Feng1

    Journal of Renewable Materials, Vol.11, No.5, pp. 2265-2278, 2023, DOI:10.32604/jrm.2023.025483 - 13 February 2023

    Abstract Poplar wood, which was used as the absorption material for the solar-driven interfacial evaporation, was treated for 3 days, 6 days and 9 days with the pectinase, and then was simulated for photothermal evaporation test at one standard solar radiation intensity (1 kW⋅m−2). The effects of pectinase treatment on cell passage and water migration capacity of poplars were analyzed by the mercury intrusion porosimetry, the scanning electron microscope and fractal theory. It was found that the pit membrane and the ray parenchyma cells of poplar wood were degraded and destroyed after pectinase treatment. Compared with the untreated More >

  • Open Access

    ARTICLE

    Xception-Fractalnet: Hybrid Deep Learning Based Multi-Class Classification of Alzheimer’s Disease

    Mudiyala Aparna, Battula Srinivasa Rao*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6909-6932, 2023, DOI:10.32604/cmc.2023.034796 - 28 December 2022

    Abstract Neurological disorders such as Alzheimer’s disease (AD) are very challenging to treat due to their sensitivity, technical challenges during surgery, and high expenses. The complexity of the brain structures makes it difficult to distinguish between the various brain tissues and categorize AD using conventional classification methods. Furthermore, conventional approaches take a lot of time and might not always be precise. Hence, a suitable classification framework with brain imaging may produce more accurate findings for early diagnosis of AD. Therefore in this paper, an effective hybrid Xception and Fractalnet-based deep learning framework are implemented to classify… More >

  • Open Access

    ARTICLE

    On the Approximation of Fractal-Fractional Differential Equations Using Numerical Inverse Laplace Transform Methods

    Kamran1, Siraj Ahmad1, Kamal Shah2,3,*, Thabet Abdeljawad2,4,*, Bahaaeldin Abdalla2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2743-2765, 2023, DOI:10.32604/cmes.2023.023705 - 23 November 2022

    Abstract Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects. Using the Laplace transform for solving differential equations, however, sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analytical means. Thus, we need numerical inversion methods to convert the obtained solution from Laplace domain to a real domain. In this paper, we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with order . Our proposed… More > Graphic Abstract

    On the Approximation of Fractal-Fractional Differential Equations Using Numerical Inverse Laplace Transform Methods

  • Open Access

    ARTICLE

    Characteristic of Fresh and Harden Properties of Polyvinyl Alcohol Fibre Reinforced Alkali Activated Composite

    Yiguang Wang1,2, Zhe Zhang1, Xun Zhang1,*

    Journal of Renewable Materials, Vol.11, No.3, pp. 1321-1337, 2023, DOI:10.32604/jrm.2022.023266 - 31 October 2022

    Abstract Fibre can enhance the mechanical properties of cement-based composites, but fibre also degrades their workability. However, the quantitative effects of fiber content and length-diameter ratio on alkali-activated materials are still unclear. Various aspect ratio, volume fraction of polyvinyl alcohol fibre (PVAF), and various water-binder ratio were employed to prepare a total of 26 groups of fibre reinforced alkali-activated composite (FRAAC). The influence of PVAF fibre factor (product of fiber volume fraction and length-diameter ratio) on flowability, compactness, strength, and crack fractal dimension of FRAAC was researched. The influence of water-binder ratio on the plastic viscosity… More >

  • Open Access

    ARTICLE

    Cushioning Performance of Hilbert Fractal Sandwich Packaging Structures under Quasi-Static Compressions

    Xingye Xu1, Haiyan Song1,2,*, Lijun Wang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 275-292, 2023, DOI:10.32604/cmes.2022.022637 - 29 September 2022

    Abstract The sandwich structure of cushioning packaging has an important influence on the cushioning performance. Mathematical fractal theory is an important graphic expression. Based on Hilbert fractal theory, a new sandwich structure was designed. The generation mechanism and recurrence formula of the Hilbert fractal were expressed by Lin’s language, and the second-order Hilbert sandwich structure was constructed from thermoplastic polyurethane. The constitutive model of the hyperelastic body was established by using the finite element method. With the unit mass energy absorption as the optimization goal, the fractal sandwich structure was optimized, and the best result was More >

  • Open Access

    ARTICLE

    Activation Functions Effect on Fractal Coding Using Neural Networks

    Rashad A. Al-Jawfi*

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 957-965, 2023, DOI:10.32604/iasc.2023.031700 - 29 September 2022

    Abstract Activation functions play an essential role in converting the output of the artificial neural network into nonlinear results, since without this nonlinearity, the results of the network will be less accurate. Nonlinearity is the mission of all nonlinear functions, except for polynomials. The activation function must be differentiable for backpropagation learning. This study’s objective is to determine the best activation functions for the approximation of each fractal image. Different results have been attained using Matlab and Visual Basic programs, which indicate that the bounded function is more helpful than other functions. The non-linearity of the… More >

  • Open Access

    ARTICLE

    Novel Path Counting-Based Method for Fractal Dimension Estimation of the Ultra-Dense Networks

    Farid Nahli11, Alexander Paramonov1, Naglaa F. Soliman2, Hussah Nasser AlEisa3,*, Reem Alkanhel2, Ammar Muthanna1, Abdelhamied A. Ateya4

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 561-572, 2023, DOI:10.32604/iasc.2023.031299 - 29 September 2022

    Abstract Next-generation networks, including the Internet of Things (IoT), fifth-generation cellular systems (5G), and sixth-generation cellular systems (6G), suffer from the dramatic increase of the number of deployed devices. This puts high constraints and challenges on the design of such networks. Structural changing of the network is one of such challenges that affect the network performance, including the required quality of service (QoS). The fractal dimension (FD) is considered one of the main indicators used to represent the structure of the communication network. To this end, this work analyzes the FD of the network and its… More >

  • Open Access

    ARTICLE

    A Secure and Lightweight Chaos Based Image Encryption Scheme

    Fadia Ali Khan1, Jameel Ahmed1, Fehaid Alqahtani2, Suliman A. Alsuhibany3, Fawad Ahmed4, Jawad Ahmad5,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 279-294, 2022, DOI:10.32604/cmc.2022.028789 - 18 May 2022

    Abstract In this paper, we present an image encryption scheme based on the multi-stage chaos-based image encryption algorithm. The method works on the principle of confusion and diffusion. The proposed scheme containing both confusion and diffusion modules are highly secure and effective as compared to the existing schemes. Initially, an image (red, green, and blue components) is partitioned into blocks with an equal number of pixels. Each block is then processed with Tinkerbell Chaotic Map (TBCM) to get shuffled pixels and shuffled blocks. Composite Fractal Function (CFF) change the value of pixels of each color component More >

Displaying 21-30 on page 3 of 50. Per Page