Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Novel Investigation of Stochastic Fractional Differential Equations Measles Model via the White Noise and Global Derivative Operator Depending on Mittag-Leffler Kernel

    Saima Rashid1,2,*, Fahd Jarad3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2289-2327, 2024, DOI:10.32604/cmes.2023.028773

    Abstract Because of the features involved with their varied kernels, differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues. In this paper, we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels. In this approach, the overall population was separated into five cohorts. Furthermore, the descriptive behavior of the system was investigated, including prerequisites for the positivity of solutions, invariant domain of the solution, presence and stability of equilibrium points, and sensitivity analysis. We included a stochastic element in every cohort and… More >

  • Open Access

    ARTICLE

    Dynamical Analysis of the Stochastic COVID-19 Model Using Piecewise Differential Equation Technique

    Yu-Ming Chu1, Sobia Sultana2, Saima Rashid3,*, Mohammed Shaaf Alharthi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2427-2464, 2023, DOI:10.32604/cmes.2023.028771

    Abstract Various data sets showing the prevalence of numerous viral diseases have demonstrated that the transmission is not truly homogeneous. Two examples are the spread of Spanish flu and COVID-19. The aim of this research is to develop a comprehensive nonlinear stochastic model having six cohorts relying on ordinary differential equations via piecewise fractional differential operators. Firstly, the strength number of the deterministic case is carried out. Then, for the stochastic model, we show that there is a critical number that can predict virus persistence and infection eradication. Because of the peculiarity of this notion, an interesting way… More >

  • Open Access

    ARTICLE

    On Fractional Differential Inclusion for an Epidemic Model via L-Fuzzy Fixed Point Results

    Maha Noorwali1, Mohammed Shehu Shagari2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1937-1956, 2023, DOI:10.32604/cmes.2023.028239

    Abstract The real world is filled with uncertainty, vagueness, and imprecision. The concepts we meet in everyday life are vague rather than precise. In real-world situations, if a model requires that conclusions drawn from it have some bearings on reality, then two major problems immediately arise, viz. real situations are not usually crisp and deterministic; complete descriptions of real systems often require more comprehensive data than human beings could recognize simultaneously, process and understand. Conventional mathematical tools which require all inferences to be exact, are not always efficient to handle imprecisions in a wide variety of practical situations. Following the latter… More >

  • Open Access

    ARTICLE

    New Configurations of the Fuzzy Fractional Differential Boussinesq Model with Application in Ocean Engineering and Their Analysis in Statistical Theory

    Yu-Ming Chu1, Saima Rashid2,*, Shazia Karim3, Anam Sultan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1573-1611, 2023, DOI:10.32604/cmes.2023.027724

    Abstract The fractional-order Boussinesq equations (FBSQe) are investigated in this work to see if they can effectively improve the situation where the shallow water equation cannot directly handle the dispersion wave. The fuzzy forms of analytical FBSQe solutions are first derived using the Adomian decomposition method. It also occurs on the sea floor as opposed to at the functionality. A set of dynamical partial differential equations (PDEs) in this article exemplify an unconfined aquifer flow implication. This methodology can accurately simulate climatological intrinsic waves, so the ripples are spread across a large demographic zone. The Aboodh transform merged with the mechanism… More >

  • Open Access

    ARTICLE

    On Time Fractional Partial Differential Equations and Their Solution by Certain Formable Transform Decomposition Method

    Rania Saadeh1, Ahmad Qazza1, Aliaa Burqan1, Shrideh Al-Omari2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 3121-3139, 2023, DOI:10.32604/cmes.2023.026313

    Abstract This paper aims to investigate a new efficient method for solving time fractional partial differential equations. In this orientation, a reliable formable transform decomposition method has been designed and developed, which is a novel combination of the formable integral transform and the decomposition method. Basically, certain accurate solutions for time-fractional partial differential equations have been presented. The method under concern demands more simple calculations and fewer efforts compared to the existing methods. Besides, the posed formable transform decomposition method has been utilized to yield a series solution for given fractional partial differential equations. Moreover, several interesting formulas relevant to the… More >

  • Open Access

    ARTICLE

    On Nonlinear Conformable Fractional Order Dynamical System via Differential Transform Method

    Kamal Shah1,2, Thabet Abdeljawad3,4,*, Fahd Jarad5, Qasem Al-Mdallal6

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1457-1472, 2023, DOI:10.32604/cmes.2023.021523

    Abstract This article studies a nonlinear fractional order Lotka-Volterra prey-predator type dynamical system. For the proposed study, we consider the model under the conformable fractional order derivative (CFOD). We investigate the mentioned dynamical system for the existence and uniqueness of at least one solution. Indeed, Schauder and Banach fixed point theorems are utilized to prove our claim. Further, an algorithm for the approximate analytical solution to the proposed problem has been established. In this regard, the conformable fractional differential transform (CFDT) technique is used to compute the required results in the form of a series. Using Matlab-16, we simulate the series… More >

  • Open Access

    ARTICLE

    On the Approximation of Fractal-Fractional Differential Equations Using Numerical Inverse Laplace Transform Methods

    Kamran1, Siraj Ahmad1, Kamal Shah2,3,*, Thabet Abdeljawad2,4,*, Bahaaeldin Abdalla2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2743-2765, 2023, DOI:10.32604/cmes.2023.023705

    Abstract Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects. Using the Laplace transform for solving differential equations, however, sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analytical means. Thus, we need numerical inversion methods to convert the obtained solution from Laplace domain to a real domain. In this paper, we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with order . Our proposed numerical scheme is based on… More > Graphic Abstract

    On the Approximation of Fractal-Fractional Differential Equations Using Numerical Inverse Laplace Transform Methods

  • Open Access

    ARTICLE

    Solving Fractional Differential Equations via Fixed Points of Chatterjea Maps

    Nawab Hussain1,*, Saud M. Alsulami1, Hind Alamri1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2617-2648, 2023, DOI:10.32604/cmes.2023.023143

    Abstract In this paper, we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces. Furthermore, we study fixed point theorems for Reich and Chatterjea nonexpansive mappings in a Banach space using the Krasnoselskii-Ishikawa iteration method associated with and consider some applications of our results to prove the existence of solutions for nonlinear integral and nonlinear fractional differential equations. We also establish certain interesting examples to illustrate the usability of our results. More >

  • Open Access

    ARTICLE

    Image Enhancement Using Adaptive Fractional Order Filter

    Ayesha Heena1,*, Nagashettappa Biradar1, Najmuddin M. Maroof2, Surbhi Bhatia3, Arwa Mashat4, Shakila Basheer5

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1409-1422, 2023, DOI:10.32604/csse.2023.029611

    Abstract Image enhancement is an important preprocessing task as the contrast is low in most of the medical images, Therefore, enhancement becomes the mandatory process before actual image processing should start. This research article proposes an enhancement of the model-based differential operator for the images in general and Echocardiographic images, the proposed operators are based on Grunwald-Letnikov (G-L), Riemann-Liouville (R-L) and Caputo (Li & Xie), which are the definitions of fractional order calculus. In this fractional-order, differentiation is well focused on the enhancement of echocardiographic images. This provoked for developing a non-linear filter mask for image enhancement. The designed filter is… More >

  • Open Access

    ARTICLE

    An Efficient Computational Method for Differential Equations of Fractional Type

    Mustafa Turkyilmazoglu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.1, pp. 47-65, 2022, DOI:10.32604/cmes.2022.020781

    Abstract An effective solution method of fractional ordinary and partial differential equations is proposed in the present paper. The standard Adomian Decomposition Method (ADM) is modified via introducing a functional term involving both a variable and a parameter. A residual approach is then adopted to identify the optimal value of the embedded parameter within the frame of L2 norm. Numerical experiments on sample problems of open literature prove that the presented algorithm is quite accurate, more advantageous over the traditional ADM and straightforward to implement for the fractional ordinary and partial differential equations of the recent focus of mathematical models. Better… More >

Displaying 1-10 on page 1 of 24. Per Page