Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Dynamics of Fractional Differential Model for Schistosomiasis Disease

    Thongchai Botmart1, Wajaree Weera1,*, Muhammad Asif Zahoor Raja2, Zulqurnain Sabir3, Qusain Hiader4, Gilder Cieza Altamirano5, Plinio Junior Muro Solano6, Alfonso Tesen Arroyo6

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 981-999, 2022, DOI:10.32604/cmc.2022.028921

    Abstract In the present study, a design of a fractional order mathematical model is presented based on the schistosomiasis disease. To observe more accurate performances of the results, the use of fractional order derivatives in the mathematical model is introduce based on the schistosomiasis disease is executed. The preliminary design of the fractional order mathematical model focused on schistosomiasis disease is classified as follows: uninfected with schistosomiasis, infected with schistosomiasis, recovered from infection, susceptible snail unafflicted with schistosomiasis disease and susceptible snail afflicted with this disease. The solutions to the proposed system of the fractional order mathematical model will be presented… More >

  • Open Access

    ARTICLE

    Ground Nephogram Enhancement Algorithm Based on Improved Adaptive Fractional Differentiation

    Xiaoying Chen1,*, Jie Kang1, Cong Hu2

    Journal of New Media, Vol.3, No.4, pp. 151-180, 2021, DOI:10.32604/jnm.2021.024665

    Abstract The texture of ground-based nephogram is abundant and multiplicity. Many cloud textures are not as clear as artificial textures. A nephogram enhancement algorithm based on Adaptive Fractional Differential is established to extract the natural texture of visible ground-based cloud image. GrunwaldLentikov (G-L) and Grunwald-Lentikov (R-L) fractional differential operators are applied to the enhancement algorithm of ground-based nephogram. An operator mask based on adaptive differential order is designed. The corresponding mask template is used to process each pixel. The results show that this method can extract image texture and edge details and simplify the process of differential order selection. More >

  • Open Access

    ARTICLE

    MHD Maxwell Fluid with Heat Transfer Analysis under Ramp Velocity and Ramp Temperature Subject to Non-Integer Differentiable Operators

    Thabet Abdeljawad1,2,3, Muhammad Bilal Riaz4,5, Syed Tauseef Saeed6,*, Nazish Iftikhar6

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 821-841, 2021, DOI:10.32604/cmes.2021.012529

    Abstract The main focus of this study is to investigate the impact of heat generation/absorption with ramp velocity and ramp temperature on magnetohydrodynamic (MHD) time-dependent Maxwell fluid over an unbounded plate embedded in a permeable medium. Non-dimensional parameters along with Laplace transformation and inversion algorithms are used to find the solution of shear stress, energy, and velocity profile. Recently, new fractional differential operators are used to define ramped temperature and ramped velocity. The obtained analytical solutions are plotted for different values of emerging parameters. Fractional time derivatives are used to analyze the impact of fractional parameters (memory effect) on the dynamics… More >

  • Open Access

    ARTICLE

    A Novel Analytical Technique of the Fractional Bagley-Torvik Equations for Motion of a Rigid Plate in Newtonian Fluids

    Mahmoud H. Taha1, Mohamed A. Ramadan2,*, Dumitru Baleanu3,4,5, Galal M. Moatimid1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 969-983, 2020, DOI:10.32604/cmes.2020.010942

    Abstract The current paper is concerned with a modified Homotopy perturbation technique. This modification allows achieving an exact solution of an initial value problem of the fractional differential equation. The approach is powerful, effective, and promising in analyzing some classes of fractional differential equations for heat conduction problems and other dynamical systems. To crystallize the new approach, some illustrated examples are introduced. More >

  • Open Access

    ARTICLE

    Fractional Analysis of Thin Film Flow of Non-Newtonian Fluid

    Farnaz Ismail1, Mubashir Qayyum2, *, Syed Inayat Ali Shah1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 825-845, 2020, DOI:10.32604/cmes.2020.011073

    Abstract Modeling and analysis of thin film flow with respect to magneto hydro dynamical effect has been an important theme in the field of fluid dynamics, due to its vast industrial applications. The analysis involves studying the behavior and response of governing equations on the basis of various parameters such as thickness of the film, film surface profile, shear stress, liquid velocity, volumetric flux, vorticity, gravity, viscosity among others, along with different boundary conditions. In this article, we extend this analysis in fractional space using a homotopy based scheme, considering the case of a Non-Newtonian Pseudo-Plastic fluid for lifting and drainage… More >

  • Open Access

    ARTICLE

    Solving the Nonlinear Variable Order Fractional Differential Equations by Using Euler Wavelets

    Yanxin Wang1, *, Li Zhu1, Zhi Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 339-350, 2019, DOI:10.31614/cmes.2019.04575

    Abstract An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper. The properties of Euler wavelets and their operational matrix together with a family of piecewise functions are first presented. Then they are utilized to reduce the problem to the solution of a nonlinear system of algebraic equations. And the convergence of the Euler wavelets basis is given. The method is computationally attractive and some numerical examples are provided to illustrate its high accuracy. More >

  • Open Access

    ARTICLE

    Numerical Solution for a Class of Linear System of Fractional Differential Equations by the Haar Wavelet Method and the Convergence Analysis

    Yiming Chen1, Xiaoning Han1, Lechun Liu 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.5, pp. 391-405, 2014, DOI:10.3970/cmes.2014.097.391

    Abstract In this paper, a class of linear system of fractional differential equations is considered. It has been solved by operational matrix of Haar wavelet method which converts the problem into algebraic equations. Moreover the convergence of the method is studied, and three numerical examples are provided to demonstrate the accuracy and efficiency. More >

  • Open Access

    ARTICLE

    A Wavelet Method for Solving Bagley-Torvik Equation

    Xiaomin Wang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.2, pp. 169-182, 2014, DOI:10.3970/cmes.2014.102.169

    Abstract In this paper, an efficient and robust wavelet Laplace inversion method of solving the fractional differential equations is proposed. Such an inverse function can be applied to any reasonable function categories and it is not necessary to know the properties of original function in advance. As an example, we have applied the proposed method to the solution of the Bagley–Torvik equations and Numerical examples are given to demonstrate the efficiency and accuracy of the proposed. More >

  • Open Access

    ARTICLE

    Legendre Polynomials Method for Solving a Class of Variable Order Fractional Differential Equation

    Lifeng Wang1, Yunpeng Ma1,2, Yongqiang Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.2, pp. 97-111, 2014, DOI:10.3970/cmes.2014.101.097

    Abstract In this paper, a numerical method based on the Legendre polynomials is presented for a class of variable order fractional differential equation. We adopt the Coimbra variable order fractional operator, which can be viewed as a Caputo-type definition. Three different kinds of operational matrixes with Legendre polynomials are derived. A truncated the Legendre polynomials series together with the products of several dependent matrixes are utilized to reduce the variable order fractional differential equation to a system of algebraic equations. The solution of this system gives the approximation solution for the truncated limited n. An error analysis technique is also given.… More >

  • Open Access

    ARTICLE

    The Second Kind Chebyshev Wavelet Method for Fractional Differential Equations with Variable Coefficients

    Baofeng Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.3, pp. 187-202, 2013, DOI:10.3970/cmes.2013.093.187

    Abstract In this article, the second kind Chebyshev wavelet method is presented for solving a class of multi-order fractional differential equations (FDEs) with variable coefficients. We first construct the second kind Chebyshev wavelet, prove its convergence and then derive the operational matrix of fractional integration of the second kind Chebyshev wavelet. The operational matrix of fractional integration is utilized to reduce the fractional differential equations to a system of algebraic equations. In addition, illustrative examples are presented to demonstrate the efficiency and accuracy of the proposed method. More >

Displaying 11-20 on page 2 of 24. Per Page