Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    ARTICLE

    Design of Smith Predictor Based Fractional Controller for Higher Order Time Delay Process

    P. R. Hemavathy1,*, Y. Mohamed Shuaib2, S. K. Lakshmanaprabu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.3, pp. 481-498, 2019, DOI:10.32604/cmes.2019.04731

    Abstract Normally all real world process in a process industry will have time delay. For those processes with time delays, obtaining satisfactory closed loop performances becomes very difficult. In this work, three interacting cylindrical tank process is considered for study and the objective of the work is to compensate for time delays using smith predictor structure and to maintain the level in the third tank. Input/Output data is generated for the three interacting tank process. It is approximated as Integer First Order Plus Dead Time system (IFOPDT) and Fractional First Order Plus Dead Time system (FFOPDT). More >

  • Open Access

    ARTICLE

    Fractional Order Derivative Model of Viscoelastic layer for Active Damping of Geometrically Nonlinear Vibrations of Smart Composite Plates

    Priyankar Datta1, Manas C. Ray1

    CMC-Computers, Materials & Continua, Vol.49-50, No.1, pp. 47-80, 2015, DOI:10.3970/cmc.2015.049.047

    Abstract This paper deals with the implementation of the one dimensional form of the fractional order derivative constitutive relation for three dimensional analysis of active constrained layer damping (ACLD) of geometrically nonlinear laminated composite plates. The constraining layer of the ACLD treatment is composed of the vertically/obliquely reinforced 1–3 piezoelectric composites (PZCs). The von Kármán type nonlinear strain displacement relations are used to account for the geometric nonlinearity of the plates. A nonlinear smart finite element model (FEM) has been developed. Thin laminated substrate composite plates with various boundary conditions and stacking sequences are analyzed to More >

  • Open Access

    ARTICLE

    Approximate Analytical Solution of Time-fractional order Cauchy-Reaction Diffusion equation

    H. S. Shukla1, Mohammad Tamsir1, Vineet K. Srivastava2, Jai Kumar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.1, pp. 1-17, 2014, DOI:10.3970/cmes.2014.103.001

    Abstract The objective of this article is to carry out an approximate analytical solution of the time fractional order Cauchy-reaction diffusion equation by using a semi analytical method referred as the fractional-order reduced differential transform method (FRDTM). The fractional derivative is illustrated in the Caputo sense. The FRDTM is very efficient and effective powerful mathematical tool for solving wide range of real world physical problems by providing an exact or a closed approximate solution of any differential equation arising in engineering and allied sciences. Four test numerical examples are provided to validate and illustrate the efficiency More >

  • Open Access

    ARTICLE

    A Fractional Order HIV Internal Viral Dynamics Model

    Caibin Zeng1, Qigui Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.59, No.1, pp. 65-78, 2010, DOI:10.3970/cmes.2010.059.065

    Abstract In this paper, a fractional order model is established to describe HIV internal viral dynamics involving HAART effect. First, the model is proved to possess non-negative solutions as desired in any population dynamics. Then, a detailed analysis is carried out to study the stability of equilibrium points. Numerical simulations are presented to illustrate the stability analysis. More >

Displaying 41-50 on page 5 of 44. Per Page