Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (305)
  • Open Access

    ARTICLE

    Fracture Analysis of Concrete Structural Components Accounting for Tension Softening Effect

    A. Rama Ch,ra Murthy1,2, G.S. Palani1, Nagesh R. Iyer1,3, M Srinivasa Pavan1, Smitha Gopinath1

    CMC-Computers, Materials & Continua, Vol.19, No.2, pp. 135-154, 2010, DOI:10.3970/cmc.2010.019.135

    Abstract This paper presents methodologies for fracture analysis of concrete structural components with and without considering tension softening effect. Stress intensity factor (SIF) is computed by using analytical approach and finite element analysis. In the analytical approach, SIF accounting for tension softening effect has been obtained as the difference of SIF obtained using linear elastic fracture mechanics (LEFM) principles and SIF due to closing pressure. Superposition principle has been used by accounting for non-linearity in incremental form. SIF due to crack closing force applied on the effective crack face inside the process zone has been computed using Green's function approach. In… More >

  • Open Access

    ARTICLE

    Invariant Based Transversely-Isotropic Material and Failure Model for Fiber-Reinforced Polymers

    M. Vogler1, G. Ernst1, R. Rolfes1

    CMC-Computers, Materials & Continua, Vol.16, No.1, pp. 25-50, 2010, DOI:10.3970/cmc.2010.016.025

    Abstract In this article, a constitutive formulation of a transversely-isotropic material and failure model for fiber-reinforced polymers is presented comprising pre-failure material nonlinearities, a novel invariant based quadratic failure criterion (IQC) as well as post failure material softening. The failure surface of the IQ criterion is assumed to take the influence of triaxiality on fracture into account. Further, a distinction between fiber failure and inter-fiber failure is conducted. Material softening is governed by a fracture energy formulation and the introduction of an internal length. The constitutive model is implemented into a programming user interface of the commercial finite element program Abaqus.… More >

  • Open Access

    ARTICLE

    The Influence of Structural Defect on Mechanical Properties and Fracture Behaviors of Carbon Nanotubes

    Hsien-Chie Cheng1, Yu-Chen Hsu2, Wen-Hwa Chen2

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 127-146, 2009, DOI:10.3970/cmc.2009.011.127

    Abstract Due to the limitation of fabrication technologies nowadays, structural or atomistic defects are often perceived in carbon nanotubes (CNTs) during the manufacturing process. The main goal of the study aims at providing a systematic investigation of the effects of atomistic defects on the nanomechanical properties and fracture behaviors of single-walled CNTs (SWCNTs) using molecular dynamics (MD) simulation. Furthermore, the correlation between local stress distribution and fracture evolution is studied. Key parameters and factors under investigation include the number, type (namely the vacancy and Stone-Wales defects), location and distribution of defects. Results show that the nanomechanical properties of the CNTs, such… More >

  • Open Access

    ARTICLE

    Finite Element Analysis for the Treatment of Proximal Femoral Fracture

    Ching-Chi Hsu1, Jinn Lin2, Yongyut Amaritsakul3, Takalamesar Antonius3, Ching-Kong Chao3,4

    CMC-Computers, Materials & Continua, Vol.11, No.1, pp. 1-14, 2009, DOI:10.3970/cmc.2009.011.001

    Abstract Dynamic hip screw and gamma nail have been widely used to treat the patients with proximal femoral fractures, but clinical failures of those implants are still to be found. This study developed three-dimensional finite element models to investigate the biomechanical performances of the implants. Two kinds of commercially available implants (dynamic hip screw and gamma nail) and one newly designed implant (double screw nail) under three kinds of the proximal femoral fractures (neck fracture, subtrochanteric fracture, and subtrochanteric fracture with gap) were evaluated. Double screw nail showed better biomechanical performances than dynamic hip screw and gamma nail. Two commercially available… More >

  • Open Access

    ARTICLE

    Numerical Investigation of the Multiple Dynamic Crack Branching Phenomena

    T. Nishioka1, S. Tchouikov1, T. Fujimoto1

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 147-154, 2006, DOI:10.3970/cmc.2006.003.147

    Abstract In this study, phenomena of multiple branching of dynamically propagating crack are investigated numerically. The complicated paths of cracks propagating in a material are simulated by moving finite element method based on Delaunay automatic triangulation (MFEM BODAT), which was extended for such problems. For evaluation of fracture parameters for propagating and branching cracks switching method of the path independent dynamic J integral was used. Using these techniques the generation phase simulation of multiple dynamic crack branching was performed. Various dynamic fracture parameters, which are almost impossible to obtain by experimental technique alone, were accurately evaluated. More >

Displaying 301-310 on page 31 of 305. Per Page