Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Numerical Analysis of Fiber Reinforced Polymer-Confined Concrete under Cyclic Compression Using Cohesive Zone Models

    Mingxu Zhang1, Mingliang Wang2, Wei Zhang3,*

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 599-622, 2024, DOI:10.32604/sdhm.2024.051949

    Abstract This paper examines the mechanical behavior of fiber reinforced polymer (FRP)-confined concrete under cyclic compression using the 3D cohesive zone model (CZM). A numerical modeling method was developed, employing zero-thickness cohesive elements to represent the stress-displacement relationship of concrete potential fracture surfaces and FRP-concrete interfaces. Additionally, mixed-mode damage plastic constitutive models were proposed for the concrete potential fracture surfaces and FRP-concrete interface, considering interfacial friction. Furthermore, an anisotropic plastic constitutive model was developed for the FRP composite jacket. The CZM model proposed in this study was validated using experimental data from plain concrete and large More >

  • Open Access

    PROCEEDINGS

    Fracture Behavior of Periodic Porous Structures by Phase Field Method

    Yuxuan Ying1, Wei Huang1,*, Yu-E Ma1, Fan Peng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.010572

    Abstract Intensive dynamic loadings are the main threats to the structural damage of protective structures and inner equipment, which has attracted a lot of attention in the field of advance impulsive resistance. Nanofluidic liquid foam (NLF) has become a novel and efficient energy absorption system due to its reusable energy absorption, ultra-high load transfer, and high energy absorption ratio. In order to solve the current problem that the energy absorption mechanism of NLF is still unclear, this paper conducted a systematic experimental study on the dynamic compression and energy absorption behaviours of NLF. The quasi-static cyclic… More >

  • Open Access

    REVIEW

    A Review of Experimental Research on the Mode I Fracture Behavior of Bamboo

    Yue Chen1,2, Haitao Li1,2,*, Lei Gao3,*, Wei Xu1,2, Rodolfo Lorenzo4, Milan Gaff5,6

    Journal of Renewable Materials, Vol.11, No.6, pp. 2787-2808, 2023, DOI:10.32604/jrm.2023.027634

    Abstract Bamboo is an eco-friendly material with light weight, high strength, short growth cycle and high sustainability, which is widely used in building structures. Engineered bamboo has further promoted the development of modern bamboo structures due to its unrestricted size and shape. However, as a fiber-reinforced material, fracture damage, especially Mode I fracture damage, becomes the most likely damage mode of its structure, so Mode I fracture characteristics are an important subject in the research of mechanical properties of bamboo. This paper summarizes the current status of experimental research on the Mode I fracture properties of More >

  • Open Access

    ARTICLE

    High-Temperature Deformation and Low-Temperature Fracture Behavior of Steel Slag Rubber Asphalt Mixture Surface Layer

    Zhiqiang Shu1, Jianmin Wu1,*, Shi Chen2, Shan Yi2, Shaoqing Li1

    Journal of Renewable Materials, Vol.10, No.2, pp. 453-467, 2022, DOI:10.32604/jrm.2022.016828

    Abstract Steel slag is regarded as one of the most widespread solid by-products of steel smelting with little commercial value. It can play a vital role in the construction industry especially in the field of transportation infrastructure construction. However, there are few evaluation systems established on the high-temperature deformation and low-temperature fracture behavior of steel slag rubber asphalt mixture (SSRAM). This study explores the performance of SSRAM by uniaxial penetration test, Semi-Circular Bending (SCB) test and evaluates test data through regression analysis. The uniaxial penetration test results shows that the failure deformation of SSRAM increases with… More >

  • Open Access

    ARTICLE

    Impacts of Disk Rock Sample Geometric Dimensions on Shear Fracture Behavior in a Punch Shear Test

    Tantan Zhu*, Yao Li

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 457-477, 2021, DOI:10.32604/cmes.2021.014284

    Abstract Punch shear tests have been widely used to determine rock shear mechanical properties but without a standard sample geometric dimension suggestion. To investigate the impacts of sample geometric dimensions on shear behaviors in a punch shear test, simulations using Particle Flow Code were carried out. The effects of three geometric dimensions (i.e., disk diameter, ratio of shear surface diameter to disk diameter, and ratio of disk height to shear surface diameter) were discussed. Variations of shear strength, shear stiffness, and shear dilatancy angles were studied, and the fracture processes and patterns of samples were investigated.… More >

  • Open Access

    ARTICLE

    Fracture Behavior of Heat Affected Zone of Laser-welded Joint for Ti-6Al-4V titanium alloy: Experimental and Computational Study

    Zhao Xilong1, Zhang Jianxun1, Chen Hongyuan1,2, Song Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.6, pp. 557-571, 2013, DOI:10.3970/cmes.2013.092.557

    Abstract In order to study failure perspective of Ti-6Al-4V titanium alloy welded joint, fracture behavior of the heat affected zone is researched. Microhardness, tensile test and microstructure are used to study the mechanical properties of the titanium alloy laser welded joint. The tensile and microhardness results show that heat affected zone near the base metal is the weakest in welded joints. This paper is based on the results from in-situ tension test to observe the process of crack expansion in heat affected zone. And then, in-situ test is simulated via the finite element method on ABAQUS More >

  • Open Access

    ARTICLE

    Comparison between a Cohesive Zone Model and a Continuum Damage Model in Predicting Mode-I Fracture Behavior of Adhesively Bonded Joints

    K.I. Tserpes1, A.S. Koumpias1

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.2, pp. 169-182, 2012, DOI:10.32604/cmes.2012.083.169

    Abstract In this work, a comparison between a cohesive zone model and a continuum damage model in predicting the mode-I fracture behavior of adhesively bonded joints is performed on the basis of reliability and applicability. The cohesive zone model (CZM) is based on an exponential traction law characterizing the behavior of the interface elements. The continuum damage model (CDM) is based on the stiffness degradation of adhesive elements imposed by a damage parameter. Both models have been implemented by means of a 3D finite element model. Mode-I fracture behavior of the bonded joints was characterized using… More >

  • Open Access

    ARTICLE

    Fracture Behavior in AFM-Specimen with Single Crack under Different Loading Conditions

    Qing-fen Li1, Li Zhu1, Shi-fan Zhu1, F-G Buchholz1

    Structural Durability & Health Monitoring, Vol.6, No.3&4, pp. 273-288, 2010, DOI:10.3970/sdhm.2010.006.273

    Abstract The fracture behavior in all fracture mode (AFM)-specimen with a single edged crack under different loading conditions is investigated by the aid of the commercial ANSYS code. The separated strain energy release rates (SERRs) along the crack front are calculated by the modified virtual crack closure integral (MVCCI)-method. It is shown that the computational results of the AFM-specimen are in good agreement with some available findings for pure mode I, mode II, mode III, and mixed-mode I+III loading conditions. Furthermore, the crack growth problems under complex mixed-mode II+III loading condition by using the AFM-specimen, are More >

  • Open Access

    ABSTRACT

    Study on fracture behaviors of concrete using electronic speckle pattern interferometry and finite element method

    Helen Hongniao Chen1, Ray Kai Leung Su1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.3, pp. 91-102, 2010, DOI:10.3970/icces.2010.015.091

    Abstract In this study, Electronic Speckle Pattern Interferometry (ESPI) technique was used to measure the surface displacement and strain fields around cracks in concrete beams. ESPI has high accuracy and can determine full-field deformations of concrete. However, tiny rigid-body movements of beam specimens can spoil the ESPI measurement and cause virtual deformations and false strains. Based on the theory of geometrical optics, this paper proposes a method to eliminate the false strains caused by rigid-body motion. The correction procedure was validated experimentally. Furthermore, the crack evolution in a pre-notched beam is presented. The critical minimum crack More >

  • Open Access

    ABSTRACT

    Fracture behavior of plain concrete beams -- experimental verification of one parameter model

    B.K.Raghu Prasad1, Rabindra Kumar Saha1, A.R.Gopalakrishnan1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.14, No.3, pp. 65-84, 2010, DOI:10.3970/icces.2010.014.065

    Abstract Several different models have been proposed to characterize mode-I crack propagation in concrete. The fictitious crack model proposed by Hillerborg et al. and the blunt crack band theory developed by Bazant & Oh are particularly well suited for a finite element analysis. The two-parameter fracture model proposed by Jenq & Shah is found to be applicable only for beams with s/w=4, where s=span & w=depth of the beam. The general applicability of the model for other testing configurations is not published. In the present study an experimental verification of a one-parameter model based on fundamental… More >

Displaying 1-10 on page 1 of 13. Per Page