Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Horizontal Well Interference Performance and Water Injection Huff and Puff Effect on Well Groups with Complex Fracture Networks: A Numerical Study

    Haoyu Fu1,2,3, Hua Liu1,2, Xiaohu Hu1,2, Lei Wang1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2285-2309, 2023, DOI:10.32604/cmes.2023.027996

    Abstract Well interference has become a common phenomenon with the increasing scale of horizontal well fracturing. Recent studies on well interference in horizontal wells do not properly reflect the physical model of the postfracturing well groups and the realistic fracturing process of infill wells. Establishing the correspondence between well interference causative factors and manifestations is of great significance for infill well deployment and secondary oil recovery. In this work, we develop a numerical model that considers low velocity non-Darcy seepage in shale reservoirs to study the inter-well interference phenomenon that occurs in the Santanghu field, and construct an explicit hydraulic fracture… More >

  • Open Access

    ARTICLE

    Simulation of the Production Performances of Horizontal Wells with a Fractured Shale Gas Reservoir

    Hongsha Xiao1, Ruihan Zhang2,*, Man Chen1, Cui Jing1, Shangjun Gao1, Chao Chen1, Huiyan Zhao1, Xin Huang2,*, Bo Kang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1803-1815, 2023, DOI:10.32604/fdmp.2023.026143

    Abstract The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated. In particular, a micro-seismic cloud diagram is used to describe the fracture network, and accordingly, a production model is introduced based on a multi-scale flow mechanism. A finite volume method is then exploited for the integration of the model equations. The effects of apparent permeability, conductivity, Langmuir volume, and bottom hole pressure on gas well production are studied accordingly. The simulation results show that ignoring the micro-scale flow mechanism of the shale gas leads to underestimating the well gas production. It is… More > Graphic Abstract

    Simulation of the Production Performances of Horizontal Wells with a Fractured Shale Gas Reservoir

  • Open Access

    ARTICLE

    Simulation of the Pressure-Sensitive Seepage Fracture Network in Oil Reservoirs with Multi-Group Fractures

    Yueli Feng1,2, Yuetian Liu1,2,*, Jian Chen1,2, Xiaolong Mao1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 395-415, 2022, DOI:10.32604/fdmp.2022.018141

    Abstract Stress sensitivity is a very important index to understand the seepage characteristics of a reservoir. In this study, dedicated experiments and theoretical arguments based on the visualization of porous media are used to assess the effects of the fracture angle, spacing, and relevant elastic parameters on the principal value of the permeability tensor. The fracture apertures at different angles show different change rates, which influence the relative permeability for different sets of fractures. Furthermore, under the same pressure condition, the fractures with different angles show different degrees of deformation so that the principal value direction of permeability rotates. This phenomenon… More >

  • Open Access

    REVIEW

    A Review of the Dynamic Modeling Approaches for Characterizing Fluid Flow in Naturally Fractured Reservoirs

    M. N. Tarhuni*, W. R. Sulaiman, M. Z. Jaafar, M. Milad, A. M. Alghol

    Energy Engineering, Vol.118, No.4, pp. 761-795, 2021, DOI:10.32604/EE.2021.016645

    Abstract Fluid flow in fractured media has been studied for decades and received considerable attention in the oil and gas industry because of the high productivity of naturally fractured reservoirs. Due to formation complexity and reservoir heterogeneity, characterizing fluid flow with an appropriate reservoir model presents a challenging task that differs relatively from homogeneous conventional reservoirs in many aspects of view, including geological, petrophysical, production, and economics. In most fractured reservoirs, fracture networks create complex pathways that affect hydrocarbon flow, well performance, hence reservoir characterization. A better and comprehensive understanding of the available reservoir modeling approaches is much needed to accurately… More >

  • Open Access

    ARTICLE

    A Multi-continuum Method for Studying the Effect of Inactive Fractures on Solute Transport in 2-D Discrete Fracture Network

    Zhen Wang1, Jonny Rutqvist2, Ying Dai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.6, pp. 539-556, 2013, DOI:10.3970/cmes.2013.092.539

    Abstract Fractures in a discrete fracture network can be divided into two parts: Active fractures, which form a connected fracture network and dominate fluid flow and solute transport; and inactive fractures, which are dead-end parts of the fractures (isolated fractures will be incorporated into rock matrix) and do not contribute significantly to the fluid flow, but maybe important for the solute transport, especially for rock matrix diffusion. We present a multi-continuum method (including active fracture continuum, inactive fracture continuum and matrix continuum), which is based on the “multiple interacting continua” method, to describe fluid flow and solute transport in fractured media,… More >

Displaying 1-10 on page 1 of 5. Per Page