Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    REVIEW

    Phishing Attacks in Social Engineering: A Review

    Kofi Sarpong Adu-Manu*, Richard Kwasi Ahiable, Justice Kwame Appati, Ebenezer Essel Mensah

    Journal of Cyber Security, Vol.4, No.4, pp. 239-267, 2022, DOI:10.32604/jcs.2023.041095

    Abstract Organisations closed their offices and began working from home online to prevent the spread of the COVID-19 virus. This shift in work culture coincided with increased online use during the same period. As a result, the rate of cybercrime has skyrocketed. This study examines the approaches, techniques, and countermeasures of Social Engineering and phishing in this context. The study discusses recent trends in the existing approaches for identifying phishing assaults. We explore social engineering attacks, categorise them into types, and offer both technical and social solutions for countering phishing attacks which makes this paper different from similar works that mainly… More >

  • Open Access

    ARTICLE

    Intelligent Financial Fraud Detection Using Artificial Bee Colony Optimization Based Recurrent Neural Network

    T. Karthikeyan1,*, M. Govindarajan1, V. Vijayakumar2

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1483-1498, 2023, DOI:10.32604/iasc.2023.037606

    Abstract Frauds don’t follow any recurring patterns. They require the use of unsupervised learning since their behaviour is continually changing. Fraudsters have access to the most recent technology, which gives them the ability to defraud people through online transactions. Fraudsters make assumptions about consumers’ routine behaviour, and fraud develops swiftly. Unsupervised learning must be used by fraud detection systems to recognize online payments since some fraudsters start out using online channels before moving on to other techniques. Building a deep convolutional neural network model to identify anomalies from conventional competitive swarm optimization patterns with a focus on fraud situations that cannot… More >

  • Open Access

    ARTICLE

    CDR2IMG: A Bridge from Text to Image in Telecommunication Fraud Detection

    Zhen Zhen1, Jian Gao1,2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 955-973, 2023, DOI:10.32604/csse.2023.039525

    Abstract Telecommunication fraud has run rampant recently worldwide. However, previous studies depend highly on expert knowledge-based feature engineering to extract behavior information, which cannot adapt to the fast-changing modes of fraudulent subscribers. Therefore, we propose a new taxonomy that needs no hand-designed features but directly takes raw Call Detail Records (CDR) data as input for the classifier. Concretely, we proposed a fraud detection method using a convolutional neural network (CNN) by taking CDR data as images and applying computer vision techniques like image augmentation. Comprehensive experiments on the real-world dataset from the 2020 Digital Sichuan Innovation Competition show that our proposed… More >

  • Open Access

    ARTICLE

    Smart Fraud Detection in E-Transactions Using Synthetic Minority Oversampling and Binary Harris Hawks Optimization

    Chandana Gouri Tekkali, Karthika Natarajan*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3171-3187, 2023, DOI:10.32604/cmc.2023.036865

    Abstract Fraud Transactions are haunting the economy of many individuals with several factors across the globe. This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ensure the security and integrity of digital transactions. This research proposes a novel methodology through three stages. Firstly, Synthetic Minority Oversampling Technique (SMOTE) is applied to get balanced data. Secondly, SMOTE is fed to the nature-inspired Meta Heuristic (MH) algorithm, namely Binary Harris Hawks Optimization (BinHHO), Binary Aquila Optimization (BAO), and Binary Grey Wolf Optimization (BGWO), for feature selection. BinHHO has performed well when compared with the other two. Thirdly, features… More >

  • Open Access

    ARTICLE

    Using Recurrent Neural Network Structure and Multi-Head Attention with Convolution for Fraudulent Phone Text Recognition

    Junjie Zhou, Hongkui Xu*, Zifeng Zhang, Jiangkun Lu, Wentao Guo, Zhenye Li

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2277-2297, 2023, DOI:10.32604/csse.2023.036419

    Abstract Fraud cases have been a risk in society and people’s property security has been greatly threatened. In recent studies, many promising algorithms have been developed for social media offensive text recognition as well as sentiment analysis. These algorithms are also suitable for fraudulent phone text recognition. Compared to these tasks, the semantics of fraudulent words are more complex and more difficult to distinguish. Recurrent Neural Networks (RNN), the variants of RNN, Convolutional Neural Networks (CNN), and hybrid neural networks to extract text features are used by most text classification research. However, a single network or a simple network combination cannot… More >

  • Open Access

    ARTICLE

    An Early Warning Model of Telecommunication Network Fraud Based on User Portrait

    Wen Deng1, Guangjun Liang1,2,3,*, Chenfei Yu1, Kefan Yao1, Chengrui Wang1, Xuan Zhang1

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1561-1576, 2023, DOI:10.32604/cmc.2023.035016

    Abstract With the frequent occurrence of telecommunications and network fraud crimes in recent years, new frauds have emerged one after another which has caused huge losses to the people. However, due to the lack of an effective preventive mechanism, the police are often in a passive position. Using technologies such as web crawlers, feature engineering, deep learning, and artificial intelligence, this paper proposes a user portrait fraud warning scheme based on Weibo public data. First, we perform preliminary screening and cleaning based on the keyword “defrauded” to obtain valid fraudulent user Identity Documents (IDs). The basic information and account information of… More >

  • Open Access

    ARTICLE

    Enhanced E-commerce Fraud Prediction Based on a Convolutional Neural Network Model

    Sumin Xie1, Ling Liu2,*, Guang Sun2, Bin Pan2, Lin Lang2, Peng Guo3

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1107-1117, 2023, DOI:10.32604/cmc.2023.034917

    Abstract The rapidly escalating sophistication of e-commerce fraud in recent years has led to an increasing reliance on fraud detection methods based on machine learning. However, fraud detection methods based on conventional machine learning approaches suffer from several problems, including an excessively high number of network parameters, which decreases the efficiency and increases the difficulty of training the network, while simultaneously leading to network overfitting. In addition, the sparsity of positive fraud incidents relative to the overwhelming proportion of negative incidents leads to detection failures in trained networks. The present work addresses these issues by proposing a convolutional neural network (CNN)… More >

  • Open Access

    ARTICLE

    A Multi-Module Machine Learning Approach to Detect Tax Fraud

    N. Alsadhan*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 241-253, 2023, DOI:10.32604/csse.2023.033375

    Abstract Tax fraud is one of the substantial issues affecting governments around the world. It is defined as the intentional alteration of information provided on a tax return to reduce someone’s tax liability. This is done by either reducing sales or increasing purchases. According to recent studies, governments lose over $500 billion annually due to tax fraud. A loss of this magnitude motivates tax authorities worldwide to implement efficient fraud detection strategies. Most of the work done in tax fraud using machine learning is centered on supervised models. A significant drawback of this approach is that it requires tax returns that… More >

  • Open Access

    ARTICLE

    A Credit Card Fraud Model Prediction Method Based on Penalty Factor Optimization AWTadaboost

    Wang Ning1,*, Siliang Chen2,*, Fu Qiang2, Haitao Tang2, Shen Jie2

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5951-5965, 2023, DOI:10.32604/cmc.2023.035558

    Abstract With the popularity of online payment, how to perform credit card fraud detection more accurately has also become a hot issue. And with the emergence of the adaptive boosting algorithm (Adaboost), credit card fraud detection has started to use this method in large numbers, but the traditional Adaboost is prone to overfitting in the presence of noisy samples. Therefore, in order to alleviate this phenomenon, this paper proposes a new idea: using the number of consecutive sample misclassifications to determine the noisy samples, while constructing a penalty factor to reconstruct the sample weight assignment. Firstly, the theoretical analysis shows that… More >

  • Open Access

    ARTICLE

    Leveraging Readability and Sentiment in Spam Review Filtering Using Transformer Models

    Sujithra Kanmani*, Surendiran Balasubramanian

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1439-1454, 2023, DOI:10.32604/csse.2023.029953

    Abstract Online reviews significantly influence decision-making in many aspects of society. The integrity of internet evaluations is crucial for both consumers and vendors. This concern necessitates the development of effective fake review detection techniques. The goal of this study is to identify fraudulent text reviews. A comparison is made on shill reviews vs. genuine reviews over sentiment and readability features using semi-supervised language processing methods with a labeled and balanced Deceptive Opinion dataset. We analyze textual features accessible in internet reviews by merging sentiment mining approaches with readability. Overall, the research improves fake review screening by using various transformer models such… More >

Displaying 1-10 on page 1 of 21. Per Page