Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    Numerical Solutions for Free Vibration Analysis of Thick Square Plates by the BEM

    W.L.A. Pereira1, V.J. Karam2, J.A.M. Carrer3, C.S.G. Monteiro1, W.J. Mansur1

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.2, pp. 117-130, 2013, DOI:10.3970/cmes.2013.096.117

    Abstract In this work, the BEM is applied to obtain the numerical solutions for free vibration analysis of thick square plates with two edges simply supported or clamped, and the other two edges free. A formulation based on Reissner’s theory is used here, which includes the contribution of the additional translational inertia terms to the integral equation of displacements and internal forces. The boundary element method is used to discretize the space, where it is employed the static fundamental solution. In literature, the responses for the kind of problem addressed here are very important in the More >

  • Open Access

    ARTICLE

    RMVT- and PVD-Based Finite Layer Methods for the Quasi-3D Free Vibration Analysis of Multilayered Composite and FGM Plates

    Chih-Ping Wu1,2, Hao-Yuan Li2

    CMC-Computers, Materials & Continua, Vol.19, No.2, pp. 155-198, 2010, DOI:10.3970/cmc.2010.019.155

    Abstract The Reissner mixed variational theorem (RMVT)- and principle of virtual displacements (PVD)-based finite layer methods (FLMs) are developed for the quasi-three-dimensional (3D) free vibration analysis of simply-supported, multilayered composite and functionally graded material (FGM) plates. The material properties of the FGM layers are assumed to obey either an exponent-law exponentially varied with the thickness coordinate or the power-law distributions of the volume fractions of the constituents. In these formulations, the plate is divided into a number of finite layers, where the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-plane variations… More >

  • Open Access

    ARTICLE

    Free Vibration Analysis of a Circular Plate with Multiple Circular Holes by Using the Multipole Trefftz Method

    Wei-Ming Lee1, Jeng-Tzong Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.2, pp. 141-160, 2009, DOI:10.3970/cmes.2009.050.141

    Abstract This paper presents the multipole Trefftz method to derive an analytical model describing the free vibration of a circular plate with multiple circular holes. Based on the addition theorem, the solution of multipoles centered at each circle can be expressed in terms of multipoles centered at one circle, where boundary conditions are specified. In this way, a coupled infinite system of simultaneous linear algebraic equations is derived for the circular plate with multiple holes. The direct searching approach is employed in the truncated finite system to determine the natural frequencies by using the singular value More >

  • Open Access

    ARTICLE

    A rotation free formulation for static and free vibration analysis of thin beams using gradient smoothing technique

    X.Y. Cui1,2, G. R. Liu2,3, G. Y. Li1,4, G. Zheng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.38, No.3, pp. 217-230, 2008, DOI:10.3970/cmes.2008.038.217

    Abstract In this paper, a gradient smoothed formulation is proposed to deal with a fourth-order differential equation of Bernoulli-Euler beam problems for static and dynamic analysis. Through the smoothing operation, the C1 continuity requirement for fourth-order boundary value and initial value problems can be easily relaxed, and C0 interpolating function can be employed to solve C1 problems. In present thin beam problems, linear shape functions are employed to approximate the displacement field, and smoothing domains are further formed for computing the smoothed curvature and bending moment field. Numerical examples indicate that very accurate results can be yielded when More >

Displaying 11-20 on page 2 of 14. Per Page