Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    PROCEEDINGS

    Peridynamic Simulation of Pellet-Clad Mechanical Interaction in Nuclear Fuel Rods

    Qiqing Liu1, Yin Yu1, Y.L. Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09220

    Abstract The thermomechanical response and potential cracking in nuclear fuel rods are extremely important for nuclear safety analysis. The Pellet-Clad Mechanical Interaction (PCMI) is a significant factor for the thermomechanical behaviors of pellet and clad. This study presents a PCMI model based on ordinary statebased peridynamic (OSB-PD) theory, which considering the heat transfer through the gap and contact heat transfer between pellet and clad. The two-dimensional (2D) models are constructed through irregular nonuniform discretization. The pellet model includes the random variability of the critical stretch of each bond based on normal distribution. The contact model with non-uniform discretization is proposed in… More >

  • Open Access

    ABSTRACT

    Partitioned Formulation for Solving 3D Frictional Contact Problems with BEM using Localized Lagrange Multipliers

    L. Rodríguez-Tembleque1, J.A. González1, R. Abascal1, K.C. Park2, C.A. Felippa2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.1, pp. 21-28, 2007, DOI:10.3970/icces.2007.002.021

    Abstract This work presents an interface treatment method based on localized Lagrange Multipliers (LLM) to solve frictional contact problems between two 3D elastic bodies. The connection between the solids is done using a displacement frame intercalated between the interfaces meshes, and the LLM are collocated at the interface nodes. The Boundary Elements Method (BEM) is used to compute the influence coefficients of the surface points involved, and contact conditions are imposed using projection functions. The LLM provides a partitioned formulation which preserves software modularity, facilitates non-matching meshes treatment and passes the contact patch test [4]. More >

  • Open Access

    ARTICLE

    A New Algorithm for the Thermo-Mechanical Coupled Frictional Contact Problem of Polycrystalline Aggregates Based on Plastic Slip Theory

    Yun Chen1, Junzhi Cui2, Yufeng Nie1, Yiqiang Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.3&4, pp. 189-206, 2011, DOI:10.3970/cmes.2011.076.189

    Abstract This paper presents a new numerical algorithm for thermal-mechanical coupled analysis of polycrystalline aggregates based on the plastic slip theory inside crystals and the frictional contact on their interfaces. It involves the mechanics and heat conduction behaviors caused by both force loads and temperature changing within crystal and contact interfaces between crystals. Firstly, the constitutive relationship inside single crystal, and the moment equations and energy equations are derived by means of rate-dependent plastic deformation theory and the formulation of elastic-plastic tangent modulus depended on temperature. Secondly, the contact conditions with friction, including frictional heat generation and heat transfer across the… More >

  • Open Access

    ARTICLE

    A Generalized Kelvin Solution Based BEM for Contact Problems of Elastic Indenter on Functionally Graded Materials

    H. T. Xiao1, Z. Q. Yue2

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.2, pp. 159-180, 2009, DOI:10.3970/cmes.2009.052.159

    Abstract This paper presents a three-dimensional boundary element method for contact problems of an elastic indenter on the surface of functionally graded materials (FGMs). The FGM elastic properties can have any irregular variations with depth. The indenter is subjected to the loading normal to the flat contact surface. The classical Kelvin solution is used for the mathematical formulation of the homogeneous elastic indenter. The generalized Kelvin solution is used for the mathematical formulation of the FGM base. The contact variables are defined with respect to each of the surfaces using local coordinate systems. The corresponding contact equations are used to couple… More >

  • Open Access

    ARTICLE

    Gradient Theory of Damage Coupled to Frictional Contact and Wear, and Its Numerical Treatment

    Peter J. Ireman, Anders Klarbring1, Niclas Strömberg

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.2, pp. 125-158, 2009, DOI:10.3970/cmes.2009.052.125

    Abstract In this paper finite element approaches for fretting fatigue are proposed on the basis of a non-local model of continuum damage coupled to friction and wear. The model is formulated in the frame-work of a standard material. In a previous paper this was done in the spirit of Maugin, where an extra entropy flux is introduced in the second law in order to include the gradient of the internal variable in a proper manner. In this paper we follow instead the ideas of Frémond and others, where this extra entropy flux is no longer needed, but instead new non-classical balance… More >

  • Open Access

    ARTICLE

    Optimal Plastic Synthesis of Structures with Unilateral Supports Involving Frictional Contact

    S. Tangaramvong, F. Tin-Loi

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.3, pp. 269-296, 2009, DOI:10.3970/cmes.2009.049.269

    Abstract We consider the optimal synthesis, namely minimum weight design, of rigid perfectly-plastic structures for which some supports involve unilateral frictional contact. This problem is of interest as it is not only encountered in practice but it also involves, in the general friction case, a nonassociative complementarity condition that makes it theoretically and numerically challenging. For simplicity of exposition, we focus on the class of bar structures for which yielding is governed by either pure bending or by combined axial and flexural forces. In view of possible multiplicity of solutions due to nonassociativity, a direct optimization formulation may lead to an… More >

  • Open Access

    ARTICLE

    Investigation of the Effect of Frictional Contact in III-Mode Crack under Action of the SH-Wave Harmonic Load

    A.N. Guz1, V.V. Zozulya2

    CMES-Computer Modeling in Engineering & Sciences, Vol.22, No.2, pp. 119-128, 2007, DOI:10.3970/cmes.2007.022.119

    Abstract The frictional contact interaction of the edges of a finite plane crack is studied for the case of normal incidence of a harmonic SH-shear wave which produces antiplane deformation. The forces of contact interaction and displacement discontinuity are analyzed. Influence of the wave frequency on the stress intensity factor for different coefficients of friction is studied here. More >

  • Open Access

    ARTICLE

    Finite Element Analysis of Particle Assembly-water Coupled Frictional Contact Problem

    S. Ozaki1, K. Hashiguchi2, T. Okayasu2, D.H. Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.2, pp. 101-120, 2007, DOI:10.3970/cmes.2007.018.101

    Abstract In order to analyze precisely not only the elastoplastic deformation phenomenon of saturated particle assembly such as soils, grains, powdered and tablet medicines or three dimensional cellular materials, but also the frictional sliding phenomenon between saturated particle assembly and other bodies, a particle assembly-water coupled finite element program, that incorporates both the subloading surface and the subloading-friction models, is developed. Subsequently, simulations of the compaction behavior of saturated particle assembly under strain rate control are performed. It is revealed by the numerical experiment adopting the finite element program that the frictional sliding behavior of the contact boundary influences both the… More >

Displaying 1-10 on page 1 of 8. Per Page