Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (478)
  • Open Access

    ARTICLE

    Enhancing IoT Security: Quantum-Level Resilience against Threats

    Hosam Alhakami*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 329-356, 2024, DOI:10.32604/cmc.2023.043439

    Abstract The rapid growth of the Internet of Things (IoT) operations has necessitated the incorporation of quantum computing technologies to meet its expanding needs. This integration is motivated by the need to solve the specific issues provided by the expansion of IoT and the potential benefits that quantum computing can offer in this scenario. The combination of IoT and quantum computing creates new privacy and security problems. This study examines the critical need to prevent potential security concerns from quantum computing in IoT applications. We investigate the incorporation of quantum computing approaches within IoT security frameworks, with a focus on developing… More >

  • Open Access

    ARTICLE

    Complex Decision Modeling Framework with Fairly Operators and Quaternion Numbers under Intuitionistic Fuzzy Rough Context

    Nadeem Salamat1, Muhammad Kamran1,2,*, Shahzaib Ashraf1, Manal Elzain Mohammed Abdulla3, Rashad Ismail3, Mohammed M. Al-Shamiri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1893-1933, 2024, DOI:10.32604/cmes.2023.044697

    Abstract The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy, accessibility, and cost-effectiveness. This paper investigates the potential applications of intuitionistic fuzzy sets (IFS) with rough sets in the context of sparse data. When it comes to capture uncertain information emanating from both upper and lower approximations, these intuitionistic fuzzy rough numbers (IFRNs) are superior to intuitionistic fuzzy sets and pythagorean fuzzy sets, respectively. We use rough sets in conjunction with IFSs to develop several fairly aggregation operators and analyze their underlying properties. We present numerous… More > Graphic Abstract

    Complex Decision Modeling Framework with Fairly Operators and Quaternion Numbers under Intuitionistic Fuzzy Rough Context

  • Open Access

    ARTICLE

    Einstein Hybrid Structure of q-Rung Orthopair Fuzzy Soft Set and Its Application for Diagnosis of Waterborne Infectious Disease

    Rana Muhammad Zulqarnain1, Hafiz Khalil ur Rehman2, Imran Siddique3, Hijaz Ahmad4,5, Sameh Askar6, Shahid Hussain Gurmani1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1863-1892, 2024, DOI:10.32604/cmes.2023.031480

    Abstract This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach, the Einstein hybrid structure of q-rung orthopair fuzzy soft set. This approach integrates parts of fuzzy logic and soft set theory to develop a robust alternative for disease detection in stressful situations, especially in areas affected by floods. Compared to the traditional intuitionistic fuzzy soft set and Pythagorean fuzzy soft set, the q-rung orthopair fuzzy soft set (q-ROFSS) adequately incorporates unclear and indeterminate facts. The major objective of this investigation is to formulate the q-rung orthopair fuzzy soft Einstein hybrid weighted average (q-ROFSEHWA)… More >

  • Open Access

    ARTICLE

    An Intelligent MCGDM Model in Green Suppliers Selection Using Interactional Aggregation Operators for Interval-Valued Pythagorean Fuzzy Soft Sets

    Rana Muhammad Zulqarnain1, Wen-Xiu Ma1,2,3,*, Imran Siddique4, Hijaz Ahmad5,6, Sameh Askar7

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1829-1862, 2024, DOI:10.32604/cmes.2023.030687

    Abstract Green supplier selection is an important debate in green supply chain management (GSCM), attracting global attention from scholars, especially companies and policymakers. Companies frequently search for new ideas and strategies to assist them in realizing sustainable development. Because of the speculative character of human opinions, supplier selection frequently includes unreliable data, and the interval-valued Pythagorean fuzzy soft set (IVPFSS) provides an exceptional capacity to cope with excessive fuzziness, inconsistency, and inexactness through the decision-making procedure. The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers (IVPFSNs) and create two interaction… More >

  • Open Access

    ARTICLE

    Interval Type-2 Fuzzy Model for Intelligent Fire Intensity Detection Algorithm with Decision Making in Low-Power Devices

    Emmanuel Lule1,2,*, Chomora Mikeka3, Alexander Ngenzi4, Didacienne Mukanyiligira5

    Intelligent Automation & Soft Computing, Vol.38, No.1, pp. 57-81, 2023, DOI:10.32604/iasc.2023.037988

    Abstract Local markets in East Africa have been destroyed by raging fires, leading to the loss of life and property in the nearby communities. Electrical circuits, arson, and neglected charcoal stoves are the major causes of these fires. Previous methods, i.e., satellites, are expensive to maintain and cause unnecessary delays. Also, unit-smoke detectors are highly prone to false alerts. In this paper, an Interval Type-2 TSK fuzzy model for an intelligent lightweight fire intensity detection algorithm with decision-making in low-power devices is proposed using a sparse inference rules approach. A free open–source MATLAB/Simulink fuzzy toolbox integrated into MATLAB 2018a is used… More >

  • Open Access

    ARTICLE

    A Novel Method for Aging Prediction of Railway Catenary Based on Improved Kalman Filter

    Jie Li1,3,*, Rongwen Wang2, Yongtao Hu1,3, Jinjun Li1

    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 73-90, 2024, DOI:10.32604/sdhm.2023.044023

    Abstract The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains. However, in real-world scenarios, accurate predictions are challenging due to various interferences. This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary based on an improved Kalman filter (KF). The proposed method focuses on modifying the priori state estimate covariance and measurement error covariance of the KF to enhance accuracy in complex environments. By comparing the optimal displacement value with the theoretically calculated value based on the thermal expansion effect of metals, it becomes possible… More > Graphic Abstract

    A Novel Method for Aging Prediction of Railway Catenary Based on Improved Kalman Filter

  • Open Access

    ARTICLE

    Optimization Algorithms of PERT/CPM Network Diagrams in Linear Diophantine Fuzzy Environment

    Mani Parimala1, Karthikeyan Prakash1, Ashraf Al-Quran2,*, Muhammad Riaz3, Saeid Jafari4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1095-1118, 2024, DOI:10.32604/cmes.2023.031193

    Abstract The idea of linear Diophantine fuzzy set (LDFS) theory with its control parameters is a strong model for machine learning and optimization under uncertainty. The activity times in the critical path method (CPM) representation procedures approach are initially static, but in the Project Evaluation and Review Technique (PERT) approach, they are probabilistic. This study proposes a novel way of project review and assessment methodology for a project network in a linear Diophantine fuzzy (LDF) environment. The LDF expected task time, LDF variance, LDF critical path, and LDF total expected time for determining the project network are all computed using LDF… More > Graphic Abstract

    Optimization Algorithms of PERT/CPM Network Diagrams in Linear Diophantine Fuzzy Environment

  • Open Access

    ARTICLE

    Fuzzy Difference Equations in Diagnoses of Glaucoma from Retinal Images Using Deep Learning

    D. Dorathy Prema Kavitha1, L. Francis Raj1, Sandeep Kautish2,#, Abdulaziz S. Almazyad3, Karam M. Sallam4, Ali Wagdy Mohamed5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 801-816, 2024, DOI:10.32604/cmes.2023.030902

    Abstract The intuitive fuzzy set has found important application in decision-making and machine learning. To enrich and utilize the intuitive fuzzy set, this study designed and developed a deep neural network-based glaucoma eye detection using fuzzy difference equations in the domain where the retinal images converge. Retinal image detections are categorized as normal eye recognition, suspected glaucomatous eye recognition, and glaucomatous eye recognition. Fuzzy degrees associated with weighted values are calculated to determine the level of concentration between the fuzzy partition and the retinal images. The proposed model was used to diagnose glaucoma using retinal images and involved utilizing the Convolutional… More >

  • Open Access

    ARTICLE

    Study on Two-Tier EV Charging Station Recommendation Strategy under Multi-Factor Influence

    Miao Liu, Lei Feng, Yexun Yuan, Ye Liu, Peng Geng*

    Journal on Artificial Intelligence, Vol.5, pp. 181-193, 2023, DOI:10.32604/jai.2023.046066

    Abstract This article aims to address the clustering effect caused by unorganized charging of electric vehicles by adopting a two-tier recommendation method. The electric vehicles (EVs) are classified into high-level alerts and general alerts based on their state of charge (SOC). EVs with high-level alerts have the most urgent charging needs, so the distance to charging stations is set as the highest priority for recommendations. For users with general alerts, a comprehensive EV charging station recommendation model is proposed, taking into account factors such as charging price, charging time, charging station preference, and distance to the charging station. Using real data… More >

  • Open Access

    ARTICLE

    Machine Learning for Data Fusion: A Fuzzy AHP Approach for Open Issues

    Vinay Kukreja1, Asha Abraham2, K. Kalaiselvi3, K. Deepa Thilak3, Shanmugasundaram Hariharan4, Shih-Yu Chen5,6,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2899-2914, 2023, DOI:10.32604/cmc.2023.045136

    Abstract Data fusion generates fused data by combining multiple sources, resulting in information that is more consistent, accurate, and useful than any individual source and more reliable and consistent than the raw original data, which are often imperfect, inconsistent, complex, and uncertain. Traditional data fusion methods like probabilistic fusion, set-based fusion, and evidential belief reasoning fusion methods are computationally complex and require accurate classification and proper handling of raw data. Data fusion is the process of integrating multiple data sources. Data filtering means examining a dataset to exclude, rearrange, or apportion data according to the criteria. Different sensors generate a large… More >

Displaying 1-10 on page 1 of 478. Per Page