Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Enhanced Perturb and Observe Control Algorithm for a Standalone Domestic Renewable Energy System

    N. Kanagaraj1,*, Obaid Aldosari1, M. Ramasamy2, M. Vijayakumar2

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2291-2306, 2023, DOI:10.32604/iasc.2023.039101

    Abstract The generation of electricity, considering environmental and economic factors is one of the most important challenges of recent years. In this article, a thermoelectric generator (TEG) is proposed to use the thermal energy of an electric water heater (EWH) to generate electricity independently. To improve the energy conversion efficiency of the TEG, a fuzzy logic controller (FLC)-based perturb & observe (P&O) type maximum power point tracking (MPPT) control algorithm is used in this study. An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers. Also, a significant amount of thermal energy… More >

  • Open Access

    ARTICLE

    An Adaptive Neuro-Fuzzy Inference System to Improve Fractional Order Controller Performance

    N. Kanagaraj*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3213-3226, 2023, DOI:10.32604/iasc.2023.029901

    Abstract The design and analysis of a fractional order proportional integral derivate (FOPID) controller integrated with an adaptive neuro-fuzzy inference system (ANFIS) is proposed in this study. A first order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme. In the proposed adaptive control structure, the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors (λ and µ) of the FOPID (also known as PIλDµ) controller to achieve better control performance. When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters, the stability… More >

  • Open Access

    ARTICLE

    Performance Analysis of Optimization Based FOC and DTC Methods for Three Phase Induction Motor

    V. Jesus Bobin*, M. MarsalineBeno

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2493-2511, 2023, DOI:10.32604/iasc.2023.024679

    Abstract Three-phase induction motors are becoming increasingly utilized in industrial field due to their better efficiency and simple manufacture. The speed control of an induction motor is essential in a variety of applications, but it is difficult to control. This research analyses the three-phase induction motor’s performance using field-oriented control (FOC) and direct torque control (DTC) techniques. The major aim of this work is to provide a critical evaluation of developing a simple speed controller for induction motors with improving the performance of Induction Motor (IM). For controlling a motor, different optimization approaches are accessible; in this research, a Fuzzy Logic… More >

  • Open Access

    ARTICLE

    Frequency Control Approach and Load Forecasting Assessment for Wind Systems

    K. Sukanya*, P. Vijayakumar

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 971-982, 2023, DOI:10.32604/iasc.2023.028047

    Abstract Frequency deviation has to be controlled in power generation units when there are fluctuations in system frequency. With several renewable energy sources, wind energy forecasting is majorly focused in this work which is a tough task due to its variations and uncontrollable nature. Whenever there is a mismatch between generation and demand, the frequency deviation may arise from the actual frequency 50 Hz (in India). To mitigate the frequency deviation issue, it is necessary to develop an effective technique for better frequency control in wind energy systems. In this work, heuristic Fuzzy Logic Based Controller (FLC) is developed for providing… More >

  • Open Access

    ARTICLE

    5G Smart Mobility Management Based Fuzzy Logic Controller Unit

    Chafaa Hamrouni1,*, Slim Chaoui2

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4941-4953, 2022, DOI:10.32604/cmc.2022.023732

    Abstract In the paper, we propose a fuzzy logic controller system to be implemented for smart mobility management in the 5G wireless communication network. Mobility management is considered as a main issue for all-IP mobile networks future generation. As a network-based mobility management protocol, Internet Engineering Task Force developed the Proxy Mobile IPv6 (PMIPv6) in order to support the mobility of IP devices, and many other results were presented to reduce latency handover and the amount of PMIPv6 signaling, but it is not enough for the application needs in real-time. The present paper describes an approach based on the IEEE 802.21… More >

  • Open Access

    ARTICLE

    Adaptive Fuzzy Logic Controller for Harmonics Mitigation Using Particle Swarm Optimization

    Waleed Rafique1, Ayesha Khan2, Ahmad Almogren3, Jehangir Arshad1, Adnan Yousaf4, Mujtaba Hussain Jaffery1, Ateeq Ur Rehman5, Muhammad Shafiq6,*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4275-4293, 2022, DOI:10.32604/cmc.2022.023588

    Abstract An excessive use of non-linear devices in industry results in current harmonics that degrades the power quality with an unfavorable effect on power system performance. In this research, a novel control technique-based Hybrid-Active Power-Filter (HAPF) is implemented for reactive power compensation and harmonic current component for balanced load by improving the Power-Factor (PF) and Total–Hormonic Distortion (THD) and the performance of a system. This work proposed a soft-computing technique based on Particle Swarm-Optimization (PSO) and Adaptive Fuzzy technique to avoid the phase delays caused by conventional control methods. Moreover, the control algorithms are implemented for an instantaneous reactive and active… More >

  • Open Access

    ARTICLE

    Actuator Fluid Control Using Fuzzy Feedback for Soft Robotics Activities

    K. Karnavel1,*, G. Shanmugasundaram2, Satish S. Salunkhe3, V. Kamatchi Sundari4, M. Shunmugathammal4, Bal Krishna Saraswat5

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1855-1865, 2022, DOI:10.32604/iasc.2022.023524

    Abstract Soft robotics is a new field that uses actuators that are non-standard and compatible materials. Industrial robotics is high-throughput manufacturing devices that are quick and accurate. They are built on rigid-body mechanisms. The advancement of robotic production now depends on the inclusion of staff in manufacturing processes, allowing for the completion of activities that need cognitive abilities that are now beyond the scope of artificial networks. Hydrostatic pressure is used to achieve high deflections of structures that are based on the elastomeric in Fluid Actuators (FAs). Soft actuators based on the fluid are a popular choice safe for humans and… More >

Displaying 1-10 on page 1 of 7. Per Page