Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (241)
  • Open Access

    ARTICLE

    The Origin and Identity of the Calyculus in Loranthaceae: Inferred From the Floral Organogenesis of Loranthus tanakae Franch. & Sav.

    Ruozhu Lin1, Bei Cui1,2 and Wenxia Zhao1,*

    Phyton-International Journal of Experimental Botany, Vol.88, No.3, pp. 285-293, 2019, DOI:10.32604/phyton.2019.07182

    Abstract The flowers of the hemiparasitic family Loranthaceae are always subtended by a rimmed structure known as the calyculus. The origin and identity of the calyculus have been disputed for more than a century. Various hypotheses have been proposed, for example, an outgrowth of the axis, a reduced calyx, and a bracteolar (prophyllar) origin, but controversies remain. To obtain a plausible explanation of the origin of the calyculus, we investigated the flowers of Loranthus tanakae using scanning electron microscopy and light microscopy to observe the entire developmental process of the floral parts. Our results show that bracts are not present in… More >

  • Open Access

    ARTICLE

    Morphometric and Biochemical Changes in Agave americana L. Plantlets Induced By Ethyl Methanesulfonate

    S. J. Reyes-Zambrano1,†, M. L. Ramírez-Merchant1,†, C. Arias-Castro2, M. A. Rodríguez-Mendiola2, C. A. Lecona-Guzmán1, V. M. Ruíz-Valdiviezo1, D. González-Mendoza3, F. A. Gutiérrez-Miceli1,*

    Phyton-International Journal of Experimental Botany, Vol.88, No.3, pp. 277-284, 2019, DOI:10.32604/phyton.2019.06504

    Abstract A. americana L. is a crop with very little genetic variability. In order to evaluate the effect of ethyl methanesulfonate (EMS) to induce variability in in vitro plantlets of A. americana, different explants (meristems, leaves and roots) were evaluated for the production of callus. MS medium supplemented with ANA (2.68 μM) and BAP (2.68 μM) was used. Callus obtained from apical meristem were treated with 15 mM EMS for two hours after which shoot formation was induced using 2,4-D (0.11 μM) and BAP (44 μM). The EMS induced variations in the morphometric and morphological parameters of the plantlets obtained, with… More >

  • Open Access

    ARTICLE

    Shear Stress and Oxidized LDL Regulates Endothelial Cell Tube Formation through VEGF Signaling

    Bo Ling1,#, Daoxi Lei1,#, Juhui Qiu1, Kang Zhang1, Hao Chen2,*, Yeqi Wang1, Zhiyi Ye1, Guixue Wang*

    Molecular & Cellular Biomechanics, Vol.14, No.4, pp. 197-211, 2017, DOI:10.3970/mcb.2017.014.197

    Abstract Shear stress and oxidized low-density lipoprotein (oxLDL) caused by abnormal blood is critical to angiogenesis for atherosclerosis. However, the mechanism in shear stress or ox-LDL regulated angiogenesis is still not well understood. There is the hypothesis that shear stress or oxLDL regulates angiogenesis through the vascular endothelial growth factor (VEGF) signaling pathway. It is discovered that both high shear stress and low concentration of oxLDL contribute to angiogenesis, which is inhibited once the VEGF or VEGFR expression is knocked down. The expression of p-FAK and p-paxillin is regulated by the VEGF/VEGFR signal axis. VEGFR2, p-FAK, p-paxillin and VEGFR1 are VEGF-responsive… More >

  • Open Access

    ARTICLE

    Shear Stress-mediated Angiogenesis Through Id1 Relevant to Atherosclerosis

    Yidan Chen#,1, Kang Zhang#,1, Juhui Qiu1, Shicheng He1, Junyang Huang2, Lu Huang1, Dongyu Jia3, Bo Ling1, Da Sun4, Xiang Xie1, Tieying Yin*,1, Guixue Wang*,1

    Molecular & Cellular Biomechanics, Vol.14, No.2, pp. 83-100, 2017, DOI:10.3970/mcb.2017.014.081

    Abstract Abnormal shear stress in the blood vessel is an important stimulating factor for the formation of angiogenesis and vulnerable plaques. This paper intended to explore the role of shear stress-regulated Id1 in angiogenesis. First, we applied a carotid artery ring ligation to create local stenosis in ApoE-/- mice. Then, 3D geometry of the vessel network was reconstructed based on MRI, and our analysis of computational fluid dynamics revealed that wall shear stress of the proximal region was much higher than that of the distal region. In addition, results from histological staining of the proximal region found more vulnerable-probe plaques with… More >

  • Open Access

    ARTICLE

    Evaluation of Mechanical and Chemical Stimulations on Osteocalcin and Runx2 Expression in Mesenchymal Stem Cells

    Maryam Jazayeri1, Mohammad Ali Shokrgozar1, Nooshin Haghighipour1,2, Reza Mahdian3, Mehdi Farrokhi1, Shahin Bonakdar1, FereshtehMirahmadi1, Tannaz Nourizadeh Abbariki

    Molecular & Cellular Biomechanics, Vol.12, No.3, pp. 197-213, 2015, DOI:10.3970/mcb.2015.012.197

    Abstract The osseous tissue repair and regeneration have great importance in orthopedic and maxillofacial surgery. Tissue engineering makes it possible to cure different tissue abnormalities using autologous grafts. It is now obvious that mechanical loading has essential role in directing cells to differentiation. In this study, the influence of cyclic uniaxial loading and its combination with chemical factors on expression of osteogenic markers was investigated. Rat bone marrow-derived stem cells were isolated and cultured. In one group cells were maintained in chemical induction medium. In another group cells were subjected to cyclic uniaxial strain with 3% amplitude and 0.3 Hz frequency… More >

  • Open Access

    ARTICLE

    Deletion of the TPM1 and MDM20 Genes Affect the Mechanical and Structural Properties of Yeast Cells

    Annette Doyle*, Steven R. Crosby, David R. Burton*, Francis Lilley*, Gary Johnston*, Winder B. Perez, Terri G. Kinzy, Mark F. Murphy*,†,§

    Molecular & Cellular Biomechanics, Vol.10, No.4, pp. 275-288, 2013, DOI:10.3970/mcb.2013.010.275

    Abstract Many diseases including cancer are associated with a disorganised cytoskeleton. The process of characterising how cytoskeletal disorganisation affects the mechanical properties of cells offers the potential to develop new drugs and treatment regimes that may exploit mechanical weakness in cells and tissues. This work investigated the role of actin associated proteins, namely tropomyosin 1 (tpm1p) and mitochondrial distribution and morphology protein 20 (mdm20p), on the mechanical and morphological properties of yeast cells. For the first time it was shown that deletion of both the TPM1 and MDM20 genes resulted in a decrease in Young’s modulus when compared to the wild-type… More >

  • Open Access

    ARTICLE

    Mechanical Stretch-Induced Changes in Cell Morphology and mRNA Expression of Tendon/Ligament-Associated Genes in Rat Bone-Marrow Mesenchymal Stem Cells

    Guanbin Song∗,†,‡, Qing Luo*, Baiyao Xu*, Yang Ju

    Molecular & Cellular Biomechanics, Vol.7, No.3, pp. 165-174, 2010, DOI:10.3970/mcb.2010.007.165

    Abstract It has been demonstrated that mechanical stimulation plays a vital role in regulating the proliferation and differentiation of stem cells. However, little is known about the effects of mechanical stress on tendon/ligament development from mesenchymal stem cells (MSCs). Here, using a custom-made cell-stretching device, we studied the effects of mechanical stretching on the cell morphology and mRNA expression of several key genes modulating tendon/ligament genesis. We demonstrate that bone-marrow-derived rat MSCs (rMSCs), when subjected to cyclic uniaxial stretching, express obvious detectable mRNAs for tenascin C and scleraxis, a unique maker of tendon/ligament formation, and significantly increased levels of type I… More >

  • Open Access

    ARTICLE

    Simulation of 3D Solid Tumour Angiogenesis Including Arteriole, Capillary and Venule

    Jie Wu∗,†, Quan Long, Shixiong Xu*, Anwar R. Padhani§, Yuping Jiang

    Molecular & Cellular Biomechanics, Vol.5, No.4, pp. 217-228, 2008, DOI:10.3970/mcb.2008.005.217

    Abstract In this paper, a 3D mathematical model of tumour angiogenesis is developed, to generate a functional tumour vasculature for blood microcirculation. The model follows that of Anderson and Chaplain (1998) [1] with three exceptions: (a) extending the model from 2D to 3D, one arteriole and one venule is induced as two parent vessels to form an intact circulation network for blood flow; (b) generating networks able to penetrate into the tumour interior rather than the exterior only; (c) considering branching generations with different diameters, based on which three groups of vessels, such as arterioles, venules and capillaries are classified. The… More >

  • Open Access

    ARTICLE

    Focal Adhesion Kinase Signaling Controls Cyclic Tensile Strain Enhanced Collagen I-Induced Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Donald F. Ward Jr.*, William A. Williams*, Nicole E. Schapiro*, Samuel R. Christy*, Genevieve L. Weber*, Megan Salt, Robert F. Klees*, Adele Boskey, George E. Plopper ∗,‡

    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 177-188, 2007, DOI:10.3970/mcb.2007.004.177

    Abstract Focal adhesion kinase (FAK) is a key integrator of integrin-mediated signals from the extracellular matrix to the cytoskeleton and downstream signaling molecules. FAK is activated by phosphorylation at specific tyrosine residues, which then stimulate downstream signaling including the ERK1/2 pathway, leading to a variety of cellular responses. In this study, we examined the effects of FAK point mutations at tyrosine residues (Y397, Y925, Y861, and Y576/7) on osteogenic differentiation of human mesenchymal stem cells exposed to collagen I and cyclic tensile strain. Our results demonstrate that FAK signaling emanating from Y397, Y925, and to a lesser extent Y576/7, but not… More >

  • Open Access

    ARTICLE

    JavaGenes: Evolving Molecular Force Field Parameters with Genetic Algorithm

    Al Globus1, Madhu Menon2, Deepak Srivastava1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.5, pp. 557-574, 2002, DOI:10.3970/cmes.2002.003.557

    Abstract A genetic algorithm procedure has been developed for fitting parameters for many-body interatomic force field functions. Given a physics or chemistry based analytic form for the force field function, parameters are typically chosen to fit a range of structural and physical properties given either by experiments and/or by higher accuracy tight-binding or ab-initio simulations. The method involves using both near equilibrium and far from equilibrium configurations in the fitting procedure, and is unlikely to be trapped in local minima in the complex many-dimensional parameter space. As a proof of concept, we demonstrate the procedure for Stillinger-Weber (S-W) potential by (a)… More >

Displaying 231-240 on page 24 of 241. Per Page