Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (268)
  • Open Access

    ARTICLE

    Fuzzy Logic Based Evaluation of Hybrid Termination Criteria in the Genetic Algorithms for the Wind Farm Layout Design Problem

    Salman A. Khan1,*, Mohamed Mohandes2,3, Shafiqur Rehman3, Ali Al-Shaikhi2,4, Kashif Iqbal1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 553-581, 2025, DOI:10.32604/cmc.2025.064560 - 09 June 2025

    Abstract Wind energy has emerged as a potential replacement for fossil fuel-based energy sources. To harness maximum wind energy, a crucial decision in the development of an efficient wind farm is the optimal layout design. This layout defines the specific locations of the turbines within the wind farm. The process of finding the optimal locations of turbines, in the presence of various technical and technological constraints, makes the wind farm layout design problem a complex optimization problem. This problem has traditionally been solved with nature-inspired algorithms with promising results. The performance and convergence of nature-inspired algorithms… More >

  • Open Access

    ARTICLE

    A Robust Image Watermarking Based on DWT and RDWT Combined with Möbius Transformations

    Atheer Alrammahi1,2, Hedieh Sajedi1,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 887-918, 2025, DOI:10.32604/cmc.2025.063866 - 09 June 2025

    Abstract Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution, tampering, and copyright infringement. This study introduces a novel hybrid watermarking framework that integrates Discrete Wavelet Transform (DWT), Redundant Discrete Wavelet Transform (RDWT), and Möbius Transformations (MT), with optimization of transformation parameters achieved via a Genetic Algorithm (GA). By combining frequency and spatial domain techniques, the proposed method significantly enhances both the imperceptibility and robustness of watermark embedding. The approach leverages DWT and RDWT for multi-resolution decomposition, enabling watermark insertion in frequency subbands that balance visibility and resistance to attacks. RDWT,… More >

  • Open Access

    REVIEW

    Review and Comparative Analysis of System Identification Methods for Perturbed Motorized Systems

    Helen Shin Huey Wee, Nur Syazreen Ahmad*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1301-1354, 2025, DOI:10.32604/cmes.2025.063611 - 30 May 2025

    Abstract This paper reviews recent advancements in system identification methods for perturbed motorized systems, focusing on brushed DC motors, brushless DC motors, and permanent magnet synchronous motors. It examines data acquisition setups and evaluates conventional and metaheuristic optimization algorithms, highlighting their advantages, limitations, and applications. The paper explores emerging trends in model structures and parameter optimization techniques that address specific perturbations such as varying loads, noise, and friction. A comparative performance analysis is also included to assess several widely used optimization methods, including least squares (LS), particle swarm optimization (PSO), grey wolf optimizer (GWO), bat algorithm… More >

  • Open Access

    ARTICLE

    A Low Light Image Enhancement Method Based on Dehazing Physical Model

    Wencheng Wang1,2,*, Baoxin Yin1,2, Lei Li2,*, Lun Li1, Hongtao Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1595-1616, 2025, DOI:10.32604/cmes.2025.063595 - 30 May 2025

    Abstract In low-light environments, captured images often exhibit issues such as insufficient clarity and detail loss, which significantly degrade the accuracy of subsequent target recognition tasks. To tackle these challenges, this study presents a novel low-light image enhancement algorithm that leverages virtual hazy image generation through dehazing models based on statistical analysis. The proposed algorithm initiates the enhancement process by transforming the low-light image into a virtual hazy image, followed by image segmentation using a quadtree method. To improve the accuracy and robustness of atmospheric light estimation, the algorithm incorporates a genetic algorithm to optimize the… More >

  • Open Access

    ARTICLE

    Models for Predicting the Minimum Miscibility Pressure (MMP) of CO2-Oil in Ultra-Deep Oil Reservoirs Based on Machine Learning

    Kun Li1, Tianfu Li2,*, Xiuwei Wang1, Qingchun Meng1, Zhenjie Wang1, Jinyang Luo1,2, Zhaohui Wang1, Yuedong Yao2

    Energy Engineering, Vol.122, No.6, pp. 2215-2238, 2025, DOI:10.32604/ee.2025.062876 - 29 May 2025

    Abstract CO2 flooding for enhanced oil recovery (EOR) not only enables underground carbon storage but also plays a critical role in tertiary oil recovery. However, its displacement efficiency is constrained by whether CO2 and crude oil achieve miscibility, necessitating precise prediction of the minimum miscibility pressure (MMP) for CO2-oil systems. Traditional methods, such as experimental measurements and empirical correlations, face challenges including time-consuming procedures and limited applicability. In contrast, artificial intelligence (AI) algorithms have emerged as superior alternatives due to their efficiency, broad applicability, and high prediction accuracy. This study employs four AI algorithms—Random Forest Regression (RFR), Genetic… More >

  • Open Access

    REVIEW

    Bio-Inspired Algorithms in NLP Techniques: Challenges, Limitations and Its Applications

    Huu-Tuong Ho1, Thi-Thuy-Hoai Nguyen2, Duong Nguyen Minh Huy3, Luong Vuong Nguyen1,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 3945-3973, 2025, DOI:10.32604/cmc.2025.063099 - 19 May 2025

    Abstract Natural Language Processing (NLP) has become essential in text classification, sentiment analysis, machine translation, and speech recognition applications. As these tasks become complex, traditional machine learning and deep learning models encounter challenges with optimization, parameter tuning, and handling large-scale, high-dimensional data. Bio-inspired algorithms, which mimic natural processes, offer robust optimization capabilities that can enhance NLP performance by improving feature selection, optimizing model parameters, and integrating adaptive learning mechanisms. This review explores the state-of-the-art applications of bio-inspired algorithms—such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO)—across core NLP tasks. We analyze More >

  • Open Access

    ARTICLE

    Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight

    Iman S. Al-Mahdi1, Saad M. Darwish1,*, Magda M. Madbouly2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 875-909, 2025, DOI:10.32604/cmes.2025.061623 - 11 April 2025

    Abstract Heart disease prediction is a critical issue in healthcare, where accurate early diagnosis can save lives and reduce healthcare costs. The problem is inherently complex due to the high dimensionality of medical data, irrelevant or redundant features, and the variability in risk factors such as age, lifestyle, and medical history. These challenges often lead to inefficient and less accurate models. Traditional prediction methodologies face limitations in effectively handling large feature sets and optimizing classification performance, which can result in overfitting poor generalization, and high computational cost. This work proposes a novel classification model for heart… More >

  • Open Access

    ARTICLE

    An Adaptive Firefly Algorithm for Dependent Task Scheduling in IoT-Fog Computing

    Adil Yousif*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2869-2892, 2025, DOI:10.32604/cmes.2025.059786 - 03 March 2025

    Abstract The Internet of Things (IoT) has emerged as an important future technology. IoT-Fog is a new computing paradigm that processes IoT data on servers close to the source of the data. In IoT-Fog computing, resource allocation and independent task scheduling aim to deliver short response time services demanded by the IoT devices and performed by fog servers. The heterogeneity of the IoT-Fog resources and the huge amount of data that needs to be processed by the IoT-Fog tasks make scheduling fog computing tasks a challenging problem. This study proposes an Adaptive Firefly Algorithm (AFA) for… More >

  • Open Access

    ARTICLE

    Multi-Objective Optimization of Swirling Impinging Air Jets with Genetic Algorithm and Weighted Sum Method

    Sudipta Debnath1, Zahir Uddin Ahmed2, Muhammad Ikhlaq3,4,*, Md. Tanvir Khan5, Avneet Kaur6, Kuljeet Singh Grewal1

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 71-94, 2025, DOI:10.32604/fhmt.2024.059734 - 26 February 2025

    Abstract Impinging jet arrays are extensively used in numerous industrial operations, including the cooling of electronics, turbine blades, and other high-heat flux systems because of their superior heat transfer capabilities. Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution, which can lead to improved system performance and energy savings. This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system. The governing equations are resolved employing the commercial computational fluid dynamics (CFD) software ANSYS Fluent v17. The study focuses on four… More > Graphic Abstract

    Multi-Objective Optimization of Swirling Impinging Air Jets with Genetic Algorithm and Weighted Sum Method

  • Open Access

    ARTICLE

    Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System

    Hongliang Hao1, Caifeng Wen2,3, Feifei Xue2,*, Hao Qiu1, Ning Yang2, Yuwen Zhang1, Chaoyu Wang1, Edwin E. Nyakilla1

    Energy Engineering, Vol.122, No.1, pp. 285-306, 2025, DOI:10.32604/ee.2024.057720 - 27 December 2024

    Abstract Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources. This paper proposes a wind-solar hybrid energy storage system (HESS) to ensure a stable supply grid for a longer period. A multi-objective genetic algorithm (MOGA) and state of charge (SOC) region division for the batteries are introduced to solve the objective function and configuration of the system capacity, respectively. MATLAB/Simulink was used for simulation test. The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system, with a combination of a 300 More >

Displaying 11-20 on page 2 of 268. Per Page