Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (247)
  • Open Access

    ARTICLE

    Genetic algorithm-optimized backpropagation neural network establishes a diagnostic prediction model for diabetic nephropathy: Combined machine learning and experimental validation in mice

    WEI LIANG1,2,*, ZONGWEI ZHANG1,2, KEJU YANG1,2,3, HONGTU HU1,2, QIANG LUO1,2, ANKANG YANG1,2, LI CHANG4, YUANYUAN ZENG4

    BIOCELL, Vol.47, No.6, pp. 1253-1263, 2023, DOI:10.32604/biocell.2023.027373 - 19 May 2023

    Abstract Background: Diabetic nephropathy (DN) is the most common complication of type 2 diabetes mellitus and the main cause of end-stage renal disease worldwide. Diagnostic biomarkers may allow early diagnosis and treatment of DN to reduce the prevalence and delay the development of DN. Kidney biopsy is the gold standard for diagnosing DN; however, its invasive character is its primary limitation. The machine learning approach provides a non-invasive and specific criterion for diagnosing DN, although traditional machine learning algorithms need to be improved to enhance diagnostic performance. Methods: We applied high-throughput RNA sequencing to obtain the genes… More >

  • Open Access

    ARTICLE

    Prediction Model of Drilling Costs for Ultra-Deep Wells Based on GA-BP Neural Network

    Wenhua Xu1,3, Yuming Zhu2, Yingrong Wei2, Ya Su2, Yan Xu1,3, Hui Ji1, Dehua Liu1,3,*

    Energy Engineering, Vol.120, No.7, pp. 1701-1715, 2023, DOI:10.32604/ee.2023.027703 - 04 May 2023

    Abstract Drilling costs of ultra-deep well is the significant part of development investment, and accurate prediction of drilling costs plays an important role in reasonable budgeting and overall control of development cost. In order to improve the prediction accuracy of ultra-deep well drilling costs, the item and the dominant factors of drilling costs in Tarim oilfield are analyzed. Then, those factors of drilling costs are separated into categorical variables and numerous variables. Finally, a BP neural network model with drilling costs as the output is established, and hyper-parameters (initial weights and bias) of the BP neural More >

  • Open Access

    ARTICLE

    Managing Health Treatment by Optimizing Complex Lab-Developed Test Configurations: A Health Informatics Perspective

    Uzma Afzal1, Tariq Mahmood2, Ali Mustafa Qamar3,*, Ayaz H. Khan4,5

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6251-6267, 2023, DOI:10.32604/cmc.2023.037653 - 29 April 2023

    Abstract A complex Laboratory Developed Test (LDT) is a clinical test developed within a single laboratory. It is typically configured from many feature constraints from clinical repositories, which are part of the existing Laboratory Information Management System (LIMS). Although these clinical repositories are automated, support for managing patient information with test results of an LDT is also integrated within the existing LIMS. Still, the support to configure LDTs design needs to be made available even in standard LIMS packages. The manual configuration of LDTs is a complex process and can generate configuration inconsistencies because many constraints… More >

  • Open Access

    ARTICLE

    On Layout Optimization of Wireless Sensor Network Using Meta-Heuristic Approach

    Abeeda Akram1, Kashif Zafar1, Adnan Noor Mian2, Abdul Rauf Baig3, Riyad Almakki3, Lulwah AlSuwaidan3, Shakir Khan3,4,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3685-3701, 2023, DOI:10.32604/csse.2023.032024 - 03 April 2023

    Abstract One of the important research issues in wireless sensor networks (WSNs) is the optimal layout designing for the deployment of sensor nodes. It directly affects the quality of monitoring, cost, and detection capability of WSNs. Layout optimization is an NP-hard combinatorial problem, which requires optimization of multiple competing objectives like cost, coverage, connectivity, lifetime, load balancing, and energy consumption of sensor nodes. In the last decade, several meta-heuristic optimization techniques have been proposed to solve this problem, such as genetic algorithms (GA) and particle swarm optimization (PSO). However, these approaches either provided computationally expensive solutions… More >

  • Open Access

    ARTICLE

    Predicting Dementia Risk Factors Based on Feature Selection and Neural Networks

    Ashir Javeed1,2, Ana Luiza Dallora2, Johan Sanmartin Berglund2,*, Arif Ali4, Peter Anderberg2,3, Liaqat Ali5

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2491-2508, 2023, DOI:10.32604/cmc.2023.033783 - 31 March 2023

    Abstract Dementia is a disorder with high societal impact and severe consequences for its patients who suffer from a progressive cognitive decline that leads to increased morbidity, mortality, and disabilities. Since there is a consensus that dementia is a multifactorial disorder, which portrays changes in the brain of the affected individual as early as 15 years before its onset, prediction models that aim at its early detection and risk identification should consider these characteristics. This study aims at presenting a novel method for ten years prediction of dementia using on multifactorial data, which comprised 75 variables.… More >

  • Open Access

    ARTICLE

    Coordinated Scheduling of Two-Agent Production and Transportation Based on Non-Cooperative Game

    Ke Xu1,2, Peng Liu1,*, Hua Gong1,2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3279-3294, 2023, DOI:10.32604/iasc.2023.036007 - 15 March 2023

    Abstract A two-agent production and transportation coordinated scheduling problem in a single-machine environment is suggested to compete for one machine from different downstream production links or various consumers. The jobs of two agents compete for the processing position on a machine, and after the processed, they compete for the transport position on a transport vehicle to be transported to two agents. The two agents have different objective functions. The objective function of the first agent is the sum of the makespan and the total transportation time, whereas the objective function of the second agent is the… More >

  • Open Access

    ARTICLE

    Dynamic Allocation of Manufacturing Tasks and Resources in Shared Manufacturing

    Caiyun Liu, Peng Liu*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3221-3242, 2023, DOI:10.32604/iasc.2023.035114 - 15 March 2023

    Abstract Shared manufacturing is recognized as a new point-to-point manufacturing mode in the digital era. Shared manufacturing is referred to as a new manufacturing mode to realize the dynamic allocation of manufacturing tasks and resources. Compared with the traditional mode, shared manufacturing offers more abundant manufacturing resources and flexible configuration options. This paper proposes a model based on the description of the dynamic allocation of tasks and resources in the shared manufacturing environment, and the characteristics of shared manufacturing resource allocation. The execution of manufacturing tasks, in which candidate manufacturing resources enter or exit at various More >

  • Open Access

    ARTICLE

    Implementation of Hybrid Particle Swarm Optimization for Optimized Regression Testing

    V. Prakash*, S. Gopalakrishnan

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2575-2590, 2023, DOI:10.32604/iasc.2023.032122 - 15 March 2023

    Abstract Software test case optimization improves the efficiency of the software by proper structure and reduces the fault in the software. The existing research applies various optimization methods such as Genetic Algorithm, Crow Search Algorithm, Ant Colony Optimization, etc., for test case optimization. The existing methods have limitations of lower efficiency in fault diagnosis, higher computational time, and high memory requirement. The existing methods have lower efficiency in software test case optimization when the number of test cases is high. This research proposes the Tournament Winner Genetic Algorithm (TW-GA) method to improve the efficiency of software… More >

  • Open Access

    ARTICLE

    An Optimization Capacity Design Method of Wind/Photovoltaic/Hydrogen Storage Power System Based on PSO-NSGA-II

    Lei Xing1, Yakui Liu2,3,*

    Energy Engineering, Vol.120, No.4, pp. 1023-1043, 2023, DOI:10.32604/ee.2023.025335 - 13 February 2023

    Abstract The optimal allocation of integrated energy system capacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy, which has attracted many attentions. However, the optimization results of heuristic algorithms are usually influenced by the choice of hyperparameters. To solve the above problem, the particle swarm algorithm is introduced to find the optimal hyperparameters of the heuristic algorithms. Firstly, an integrated energy system consisting of the photovoltaic, wind turbine, electrolysis cell, hydrogen storage tank, and energy storage is established. Meanwhile, the minimum economic cost, the maximum wind and PV… More >

  • Open Access

    ARTICLE

    Hybrid Optimization Algorithm for Resource Allocation in LTE-Based D2D Communication

    Amel Austine*, R. Suji Pramila

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2263-2276, 2023, DOI:10.32604/csse.2023.032323 - 09 February 2023

    Abstract In a cellular network, direct Device-to-Device (D2D) communication enhances Quality of Service (QoS) in terms of coverage, throughput and amount of power consumed. Since the D2D pairs involve cellular resources for communication, the chances of interference are high. D2D communications demand minimum interference along with maximum throughput and sum rate which can be achieved by employing optimal resources and efficient power allocation procedures. In this research, a hybrid optimization model called Genetic Algorithm-Adaptive Bat Optimization (GA-ABO) algorithm is proposed for efficient resource allocation in a cellular network with D2D communication. Simulation analysis demonstrates that the More >

Displaying 41-50 on page 5 of 247. Per Page