Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Home Automation-Based Health Assessment Along Gesture Recognition via Inertial Sensors

    Hammad Rustam1, Muhammad Muneeb1, Suliman A. Alsuhibany2, Yazeed Yasin Ghadi3, Tamara Al Shloul4, Ahmad Jalal1, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2331-2346, 2023, DOI:10.32604/cmc.2023.028712 - 06 February 2023

    Abstract Hand gesture recognition (HGR) is used in a numerous applications, including medical health-care, industrial purpose and sports detection. We have developed a real-time hand gesture recognition system using inertial sensors for the smart home application. Developing such a model facilitates the medical health field (elders or disabled ones). Home automation has also been proven to be a tremendous benefit for the elderly and disabled. Residents are admitted to smart homes for comfort, luxury, improved quality of life, and protection against intrusion and burglars. This paper proposes a novel system that uses principal component analysis, linear More >

  • Open Access

    ARTICLE

    Multimodal Spatiotemporal Feature Map for Dynamic Gesture Recognition

    Xiaorui Zhang1,2,3,*, Xianglong Zeng1, Wei Sun3,4, Yongjun Ren1,2,3, Tong Xu5

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 671-686, 2023, DOI:10.32604/csse.2023.035119 - 20 January 2023

    Abstract Gesture recognition technology enables machines to read human gestures and has significant application prospects in the fields of human-computer interaction and sign language translation. Existing researches usually use convolutional neural networks to extract features directly from raw gesture data for gesture recognition, but the networks are affected by much interference information in the input data and thus fit to some unimportant features. In this paper, we proposed a novel method for encoding spatio-temporal information, which can enhance the key features required for gesture recognition, such as shape, structure, contour, position and hand motion of gestures,… More >

  • Open Access

    ARTICLE

    A Novel Action Transformer Network for Hybrid Multimodal Sign Language Recognition

    Sameena Javaid*, Safdar Rizvi

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 523-537, 2023, DOI:10.32604/cmc.2023.031924 - 22 September 2022

    Abstract Sign language fills the communication gap for people with hearing and speaking ailments. It includes both visual modalities, manual gestures consisting of movements of hands, and non-manual gestures incorporating body movements including head, facial expressions, eyes, shoulder shrugging, etc. Previously both gestures have been detected; identifying separately may have better accuracy, but much communicational information is lost. A proper sign language mechanism is needed to detect manual and non-manual gestures to convey the appropriate detailed message to others. Our novel proposed system contributes as Sign Language Action Transformer Network (SLATN), localizing hand, body, and facial… More >

  • Open Access

    ARTICLE

    A Novel SE-CNN Attention Architecture for sEMG-Based Hand Gesture Recognition

    Zhengyuan Xu1,2,#, Junxiao Yu1,#, Wentao Xiang1, Songsheng Zhu1, Mubashir Hussain3, Bin Liu1,*, Jianqing Li1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 157-177, 2023, DOI:10.32604/cmes.2022.020035 - 24 August 2022

    Abstract In this article, to reduce the complexity and improve the generalization ability of current gesture recognition systems, we propose a novel SE-CNN attention architecture for sEMG-based hand gesture recognition. The proposed algorithm introduces a temporal squeeze-and-excite block into a simple CNN architecture and then utilizes it to recalibrate the weights of the feature outputs from the convolutional layer. By enhancing important features while suppressing useless ones, the model realizes gesture recognition efficiently. The last procedure of the proposed algorithm is utilizing a simple attention mechanism to enhance the learned representations of sEMG signals to perform More >

  • Open Access

    ARTICLE

    TMCA-Net: A Compact Convolution Network for Monitoring Upper Limb Rehabilitation

    Qi Liu1, Zihao Wu1,*, Xiaodong Liu2

    Journal on Internet of Things, Vol.4, No.3, pp. 169-181, 2022, DOI:10.32604/jiot.2022.040368 - 12 June 2023

    Abstract This study proposed a lightweight but high-performance convolution network for accurately classifying five upper limb movements of arm, involving forearm flexion and rotation, arm extension, lumbar touch and no reaction state, aiming to monitoring patient’s rehabilitation process and assist the therapist in elevating patient compliance with treatment. To achieve this goal, a lightweight convolution neural network TMCA-Net (Time Multiscale Channel Attention Convolutional Neural Network) is designed, which combines attention mechanism, uses multi-branched convolution structure to automatically extract feature information at different scales from sensor data, and filters feature information based on attention mechanism. In particular,… More >

  • Open Access

    ARTICLE

    Intelligent Sign Language Recognition System for E-Learning Context

    Muhammad Jamil Hussain1, Ahmad Shaoor1, Suliman A. Alsuhibany2, Yazeed Yasin Ghadi3, Tamara al Shloul4, Ahmad Jalal1, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5327-5343, 2022, DOI:10.32604/cmc.2022.025953 - 21 April 2022

    Abstract In this research work, an efficient sign language recognition tool for e-learning has been proposed with a new type of feature set based on angle and lines. This feature set has the ability to increase the overall performance of machine learning algorithms in an efficient way. The hand gesture recognition based on these features has been implemented for usage in real-time. The feature set used hand landmarks, which were generated using media-pipe (MediaPipe) and open computer vision (openCV) on each frame of the incoming video. The overall algorithm has been tested on two well-known ASL-alphabet More >

  • Open Access

    ARTICLE

    Robust Interactive Method for Hand Gestures Recognition Using Machine Learning

    Amal Abdullah Mohammed Alteaimi1,*, Mohamed Tahar Ben Othman1,2

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 577-595, 2022, DOI:10.32604/cmc.2022.023591 - 24 February 2022

    Abstract The Hand Gestures Recognition (HGR) System can be employed to facilitate communication between humans and computers instead of using special input and output devices. These devices may complicate communication with computers especially for people with disabilities. Hand gestures can be defined as a natural human-to-human communication method, which also can be used in human-computer interaction. Many researchers developed various techniques and methods that aimed to understand and recognize specific hand gestures by employing one or two machine learning algorithms with a reasonable accuracy. This work aims to develop a powerful hand gesture recognition model with… More >

  • Open Access

    ARTICLE

    Dynamic Hand Gesture Recognition Using 3D-CNN and LSTM Networks

    Muneeb Ur Rehman1, Fawad Ahmed1, Muhammad Attique Khan2, Usman Tariq3, Faisal Abdulaziz Alfouzan4, Nouf M. Alzahrani5, Jawad Ahmad6,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4675-4690, 2022, DOI:10.32604/cmc.2022.019586 - 11 October 2021

    Abstract Recognition of dynamic hand gestures in real-time is a difficult task because the system can never know when or from where the gesture starts and ends in a video stream. Many researchers have been working on vision-based gesture recognition due to its various applications. This paper proposes a deep learning architecture based on the combination of a 3D Convolutional Neural Network (3D-CNN) and a Long Short-Term Memory (LSTM) network. The proposed architecture extracts spatial-temporal information from video sequences input while avoiding extensive computation. The 3D-CNN is used for the extraction of spectral and spatial features More >

  • Open Access

    ARTICLE

    Human-Animal Affective Robot Touch Classification Using Deep Neural Network

    Mohammed Ibrahim Ahmed Al-mashhadani1, Theyazn H. H. Aldhyani2,*, Mosleh Hmoud Al-Adhaileh3, Alwi M. Bamhdi4, Mohammed Y. Alzahrani5, Fawaz Waselallah Alsaade6, Hasan Alkahtani1,6

    Computer Systems Science and Engineering, Vol.38, No.1, pp. 25-37, 2021, DOI:10.32604/csse.2021.014992 - 01 April 2021

    Abstract Touch gesture recognition is an important aspect in human–robot interaction, as it makes such interaction effective and realistic. The novelty of this study is the development of a system that recognizes human–animal affective robot touch (HAART) using a deep learning algorithm. The proposed system was used for touch gesture recognition based on a dataset provided by the Recognition of the Touch Gestures Challenge 2015. The dataset was tested with numerous subjects performing different HAART gestures; each touch was performed on a robotic animal covered by a pressure sensor skin. A convolutional neural network algorithm is… More >

  • Open Access

    ARTICLE

    Intelligent Dynamic Gesture Recognition Using CNN Empowered by Edit Distance

    Shazia Saqib1, Allah Ditta2, Muhammad Adnan Khan1,*, Syed Asad Raza Kazmi3, Hani Alquhayz4

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 2061-2076, 2021, DOI:10.32604/cmc.2020.013905 - 26 November 2020

    Abstract Human activity detection and recognition is a challenging task. Video surveillance can benefit greatly by advances in Internet of Things (IoT) and cloud computing. Artificial intelligence IoT (AIoT) based devices form the basis of a smart city. The research presents Intelligent dynamic gesture recognition (IDGR) using a Convolutional neural network (CNN) empowered by edit distance for video recognition. The proposed system has been evaluated using AIoT enabled devices for static and dynamic gestures of Pakistani sign language (PSL). However, the proposed methodology can work efficiently for any type of video. The proposed research concludes that… More >

Displaying 11-20 on page 2 of 21. Per Page