Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    A Novel Variable-Fidelity Kriging Surrogate Model Based on Global Optimization for Black-Box Problems

    Yi Guan1, Pengpeng Zhi2,3,*, Zhonglai Wang1,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3343-3368, 2025, DOI:10.32604/cmes.2025.069515 - 30 September 2025

    Abstract Variable-fidelity (VF) surrogate models have received increasing attention in engineering design optimization as they can approximate expensive high-fidelity (HF) simulations with reduced computational power. A key challenge to building a VF model is devising an adaptive model updating strategy that jointly selects additional low-fidelity (LF) and/or HF samples. The additional samples must enhance the model accuracy while maximizing the computational efficiency. We propose ISMA-VFEEI, a global optimization framework that integrates an Improved Slime-Mould Algorithm (ISMA) and a Variable-Fidelity Expected Extension Improvement (VFEEI) learning function to construct a VF surrogate model efficiently. First, A cost-aware VFEEI More >

  • Open Access

    ARTICLE

    NTSSA: A Novel Multi-Strategy Enhanced Sparrow Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for Global Optimization

    Hui Lv1,#, Yuer Yang2,3,4,#, Yifeng Lin2,3,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 925-953, 2025, DOI:10.32604/cmc.2025.065709 - 29 August 2025

    Abstract It is evident that complex optimization problems are becoming increasingly prominent, metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional, nonlinear problems. However, the traditional Sparrow Search Algorithm (SSA) suffers from limited global search capability, insufficient population diversity, and slow convergence, which often leads to premature stagnation in local optima. Despite the proposal of various enhanced versions, the effective balancing of exploration and exploitation remains an unsolved challenge. To address the previously mentioned problems, this study proposes a multi-strategy collaborative improved SSA, which systematically integrates four complementary strategies: (1) the Northern Goshawk Optimization (NGO) mechanism… More >

  • Open Access

    ARTICLE

    Evolutionary Particle Swarm Optimization Algorithm Based on Collective Prediction for Deployment of Base Stations

    Jiaying Shen1, Donglin Zhu1, Yujia Liu2, Leyi Wang1, Jialing Hu1, Zhaolong Ouyang1, Changjun Zhou1, Taiyong Li3,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 345-369, 2025, DOI:10.32604/cmc.2024.060335 - 03 January 2025

    Abstract The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life. The development of the Internet of Things (IoT) relies on the support of base stations, which provide a solid foundation for achieving a more intelligent way of living. In a specific area, achieving higher signal coverage with fewer base stations has become an urgent problem. Therefore, this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization (EPSO)… More >

  • Open Access

    ARTICLE

    BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems

    Farouq Zitouni1,*, Saad Harous2, Abdulaziz S. Almazyad3, Ali Wagdy Mohamed4,5, Guojiang Xiong6, Fatima Zohra Khechiba1, Khadidja Kherchouche1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 219-265, 2024, DOI:10.32604/cmes.2024.052001 - 20 August 2024

    Abstract Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems. This approach aims to leverage the strengths of multiple algorithms, enhancing solution quality, convergence speed, and robustness, thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks. In this paper, we introduce a hybrid algorithm that amalgamates three distinct metaheuristics: the Beluga Whale Optimization (BWO), the Honey Badger Algorithm (HBA), and the Jellyfish Search (JS) optimizer. The proposed hybrid algorithm will be referred to as BHJO. Through this fusion, the BHJO algorithm aims to… More >

  • Open Access

    ARTICLE

    A Multi-Strategy-Improved Northern Goshawk Optimization Algorithm for Global Optimization and Engineering Design

    Liang Zeng1,2, Mai Hu1, Chenning Zhang1, Quan Yuan1, Shanshan Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1677-1709, 2024, DOI:10.32604/cmc.2024.049717 - 18 July 2024

    Abstract Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines. To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization (NGO) algorithm, particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes, this study introduces an advanced Improved Northern Goshawk Optimization (INGO) algorithm. This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency. Initially, a tent chaotic map is employed in the initialization phase to generate a diverse initial population, providing high-quality feasible solutions. Subsequently, after… More >

  • Open Access

    ARTICLE

    Path-Based Clustering Algorithm with High Scalability Using the Combined Behavior of Evolutionary Algorithms

    Leila Safari-Monjeghtapeh1, Mansour Esmaeilpour2,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 705-721, 2024, DOI:10.32604/csse.2024.044892 - 20 May 2024

    Abstract Path-based clustering algorithms typically generate clusters by optimizing a benchmark function. Most optimization methods in clustering algorithms often offer solutions close to the general optimal value. This study achieves the global optimum value for the criterion function in a shorter time using the minimax distance, Maximum Spanning Tree “MST”, and meta-heuristic algorithms, including Genetic Algorithm “GA” and Particle Swarm Optimization “PSO”. The Fast Path-based Clustering “FPC” algorithm proposed in this paper can find cluster centers correctly in most datasets and quickly perform clustering operations. The FPC does this operation using MST, the minimax distance, and… More >

  • Open Access

    ARTICLE

    An Improved Whale Optimization Algorithm for Global Optimization and Realized Volatility Prediction

    Xiang Wang1, Liangsa Wang2,*, Han Li1, Yibin Guo1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2935-2969, 2023, DOI:10.32604/cmc.2023.044948 - 26 December 2023

    Abstract The original whale optimization algorithm (WOA) has a low initial population quality and tends to converge to local optimal solutions. To address these challenges, this paper introduces an improved whale optimization algorithm called OLCHWOA, incorporating a chaos mechanism and an opposition-based learning strategy. This algorithm introduces chaotic initialization and opposition-based initialization operators during the population initialization phase, thereby enhancing the quality of the initial whale population. Additionally, including an elite opposition-based learning operator significantly improves the algorithm’s global search capabilities during iterations. The work and contributions of this paper are primarily reflected in two aspects.… More >

  • Open Access

    ARTICLE

    Research on Coordinated Development and Optimization of Distribution Networks at All Levels in Distributed Power Energy Engineering

    Zhuohan Jiang1, Jingyi Tu1, Shuncheng Liu1, Jian Peng1, Guang Ouyang2,*

    Energy Engineering, Vol.120, No.7, pp. 1655-1666, 2023, DOI:10.32604/ee.2023.026981 - 04 May 2023

    Abstract The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels. This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions. The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales. More >

  • Open Access

    ARTICLE

    Dark Forest Algorithm: A Novel Metaheuristic Algorithm for Global Optimization Problems

    Dongyang Li1, Shiyu Du2,*, Yiming Zhang2, Meiting Zhao3

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2775-2803, 2023, DOI:10.32604/cmc.2023.035911 - 31 March 2023

    Abstract Metaheuristic algorithms, as effective methods for solving optimization problems, have recently attracted considerable attention in science and engineering fields. They are popular and have broad applications owing to their high efficiency and low complexity. These algorithms are generally based on the behaviors observed in nature, physical sciences, or humans. This study proposes a novel metaheuristic algorithm called dark forest algorithm (DFA), which can yield improved optimization results for global optimization problems. In DFA, the population is divided into four groups: highest civilization, advanced civilization, normal civilization, and low civilization. Each civilization has a unique way… More >

  • Open Access

    ARTICLE

    A Double Adaptive Random Spare Reinforced Sine Cosine Algorithm

    Abdelazim G. Hussien1,2, Guoxi Liang3, Huiling Chen4,*, Haiping Lin5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2267-2289, 2023, DOI:10.32604/cmes.2023.024247 - 09 March 2023

    Abstract Many complex optimization problems in the real world can easily fall into local optimality and fail to find the optimal solution, so more new techniques and methods are needed to solve such challenges. Metaheuristic algorithms have received a lot of attention in recent years because of their efficient performance and simple structure. Sine Cosine Algorithm (SCA) is a recent Metaheuristic algorithm that is based on two trigonometric functions Sine & Cosine. However, like all other metaheuristic algorithms, SCA has a slow convergence and may fail in sub-optimal regions. In this study, an enhanced version of More >

Displaying 1-10 on page 1 of 22. Per Page