Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    A Multi-Strategy-Improved Northern Goshawk Optimization Algorithm for Global Optimization and Engineering Design

    Liang Zeng1,2, Mai Hu1, Chenning Zhang1, Quan Yuan1, Shanshan Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1677-1709, 2024, DOI:10.32604/cmc.2024.049717

    Abstract Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines. To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization (NGO) algorithm, particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes, this study introduces an advanced Improved Northern Goshawk Optimization (INGO) algorithm. This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency. Initially, a tent chaotic map is employed in the initialization phase to generate a diverse initial population, providing high-quality feasible solutions. Subsequently, after… More >

  • Open Access

    ARTICLE

    Path-Based Clustering Algorithm with High Scalability Using the Combined Behavior of Evolutionary Algorithms

    Leila Safari-Monjeghtapeh1, Mansour Esmaeilpour2,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 705-721, 2024, DOI:10.32604/csse.2024.044892

    Abstract Path-based clustering algorithms typically generate clusters by optimizing a benchmark function. Most optimization methods in clustering algorithms often offer solutions close to the general optimal value. This study achieves the global optimum value for the criterion function in a shorter time using the minimax distance, Maximum Spanning Tree “MST”, and meta-heuristic algorithms, including Genetic Algorithm “GA” and Particle Swarm Optimization “PSO”. The Fast Path-based Clustering “FPC” algorithm proposed in this paper can find cluster centers correctly in most datasets and quickly perform clustering operations. The FPC does this operation using MST, the minimax distance, and… More >

  • Open Access

    ARTICLE

    An Improved Whale Optimization Algorithm for Global Optimization and Realized Volatility Prediction

    Xiang Wang1, Liangsa Wang2,*, Han Li1, Yibin Guo1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2935-2969, 2023, DOI:10.32604/cmc.2023.044948

    Abstract The original whale optimization algorithm (WOA) has a low initial population quality and tends to converge to local optimal solutions. To address these challenges, this paper introduces an improved whale optimization algorithm called OLCHWOA, incorporating a chaos mechanism and an opposition-based learning strategy. This algorithm introduces chaotic initialization and opposition-based initialization operators during the population initialization phase, thereby enhancing the quality of the initial whale population. Additionally, including an elite opposition-based learning operator significantly improves the algorithm’s global search capabilities during iterations. The work and contributions of this paper are primarily reflected in two aspects.… More >

  • Open Access

    ARTICLE

    Research on Coordinated Development and Optimization of Distribution Networks at All Levels in Distributed Power Energy Engineering

    Zhuohan Jiang1, Jingyi Tu1, Shuncheng Liu1, Jian Peng1, Guang Ouyang2,*

    Energy Engineering, Vol.120, No.7, pp. 1655-1666, 2023, DOI:10.32604/ee.2023.026981

    Abstract The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels. This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions. The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales. More >

  • Open Access

    ARTICLE

    Dark Forest Algorithm: A Novel Metaheuristic Algorithm for Global Optimization Problems

    Dongyang Li1, Shiyu Du2,*, Yiming Zhang2, Meiting Zhao3

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2775-2803, 2023, DOI:10.32604/cmc.2023.035911

    Abstract Metaheuristic algorithms, as effective methods for solving optimization problems, have recently attracted considerable attention in science and engineering fields. They are popular and have broad applications owing to their high efficiency and low complexity. These algorithms are generally based on the behaviors observed in nature, physical sciences, or humans. This study proposes a novel metaheuristic algorithm called dark forest algorithm (DFA), which can yield improved optimization results for global optimization problems. In DFA, the population is divided into four groups: highest civilization, advanced civilization, normal civilization, and low civilization. Each civilization has a unique way… More >

  • Open Access

    ARTICLE

    A Double Adaptive Random Spare Reinforced Sine Cosine Algorithm

    Abdelazim G. Hussien1,2, Guoxi Liang3, Huiling Chen4,*, Haiping Lin5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2267-2289, 2023, DOI:10.32604/cmes.2023.024247

    Abstract Many complex optimization problems in the real world can easily fall into local optimality and fail to find the optimal solution, so more new techniques and methods are needed to solve such challenges. Metaheuristic algorithms have received a lot of attention in recent years because of their efficient performance and simple structure. Sine Cosine Algorithm (SCA) is a recent Metaheuristic algorithm that is based on two trigonometric functions Sine & Cosine. However, like all other metaheuristic algorithms, SCA has a slow convergence and may fail in sub-optimal regions. In this study, an enhanced version of More >

  • Open Access

    ARTICLE

    Hybrid Global Optimization Algorithm for Feature Selection

    Ahmad Taher Azar1,2,*, Zafar Iqbal Khan2, Syed Umar Amin2, Khaled M. Fouad1,3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2021-2037, 2023, DOI:10.32604/cmc.2023.032183

    Abstract This paper proposes Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of Particle Swarm Optimization algorithm (PLTVACIW-PSO). Its designed has introduced the benefits of Parallel computing into the combined power of TVAC (Time-Variant Acceleration Coefficients) and IW (Inertial Weight). Proposed algorithm has been tested against linear, non-linear, traditional, and multiswarm based optimization algorithms. An experimental study is performed in two stages to assess the proposed PLTVACIW-PSO. Phase I uses 12 recognized Standard Benchmarks methods to evaluate the comparative performance of the proposed PLTVACIW-PSO vs. IW based Particle Swarm Optimization (PSO) algorithms, TVAC based PSO algorithms, traditional… More >

  • Open Access

    ARTICLE

    Improved Harmony Search with Optimal Deep Learning Enabled Classification Model

    Mahmoud Ragab1,2,3,*, Adel A. Bahaddad4

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1783-1797, 2022, DOI:10.32604/cmc.2022.028055

    Abstract Due to drastic increase in the generation of data, it is tedious to examine and derive high level knowledge from the data. The rising trends of high dimension data gathering and problem representation necessitates feature selection process in several machine learning processes. The feature selection procedure establishes a generally encountered issue of global combinatorial optimization. The FS process can lessen the number of features by the removal of unwanted and repetitive data. In this aspect, this article introduces an improved harmony search based global optimization for feature selection with optimal deep learning (IHSFS-ODL) enabled classification… More >

  • Open Access

    ARTICLE

    An Improved Gorilla Troops Optimizer Based on Lens Opposition-Based Learning and Adaptive β-Hill Climbing for Global Optimization

    Yaning Xiao, Xue Sun*, Yanling Guo, Sanping Li, Yapeng Zhang, Yangwei Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 815-850, 2022, DOI:10.32604/cmes.2022.019198

    Abstract Gorilla troops optimizer (GTO) is a newly developed meta-heuristic algorithm, which is inspired by the collective lifestyle and social intelligence of gorillas. Similar to other metaheuristics, the convergence accuracy and stability of GTO will deteriorate when the optimization problems to be solved become more complex and flexible. To overcome these defects and achieve better performance, this paper proposes an improved gorilla troops optimizer (IGTO). First, Circle chaotic mapping is introduced to initialize the positions of gorillas, which facilitates the population diversity and establishes a good foundation for global search. Then, in order to avoid getting… More >

  • Open Access

    ARTICLE

    Bacterial Foraging Based Algorithm Front-end to Solve Global Optimization Problems

    Betania Hernández-Ocaña, Adrian García-López, José Hernández-Torruco, Oscar Chávez-Bosquez*

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1797-1813, 2022, DOI:10.32604/iasc.2022.023570

    Abstract The Bacterial Foraging Algorithm (BFOA) is a well-known swarm collective intelligence algorithm used to solve a variety of constraint optimization problems with wide success. Despite its universality, implementing the BFOA may be complex due to the calibration of multiple parameters. Moreover, the Two-Swim Modified Bacterial Foraging Optimization Algorithm (TS-MBFOA) is a state-of-the-art modification of the BFOA which may lead to solutions close to the optimal but with more parameters than the original BFOA. That is why in this paper we present the design using the Unified Modeling Language (UML) and the implementation in the MATLAB… More >

Displaying 1-10 on page 1 of 18. Per Page