Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access

    ARTICLE

    A Two-Step Algorithm to Estimate Variable Importance for Multi-State Data: An Application to COVID-19

    Behnaz Alafchi1, Leili Tapak1,*, Hassan Doosti2, Christophe Chesneau3, Ghodratollah Roshanaei1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2047-2064, 2023, DOI:10.32604/cmes.2022.022647 - 23 November 2022

    Abstract Survival data with a multi-state structure are frequently observed in follow-up studies. An analytic approach based on a multi-state model (MSM) should be used in longitudinal health studies in which a patient experiences a sequence of clinical progression events. One main objective in the MSM framework is variable selection, where attempts are made to identify the risk factors associated with the transition hazard rates or probabilities of disease progression. The usual variable selection methods, including stepwise and penalized methods, do not provide information about the importance of variables. In this context, we present a two-step More >

  • Open Access

    ARTICLE

    Copy Move Forgery Detection Using Novel Quadsort Moth Flame Light Gradient Boosting Machine

    R. Dhanya1,*, R. Kalaiselvi2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1577-1593, 2023, DOI:10.32604/csse.2023.031319 - 03 November 2022

    Abstract A severe problem in modern information systems is Digital media tampering along with fake information. Even though there is an enhancement in image development, image forgery, either by the photographer or via image manipulations, is also done in parallel. Numerous researches have been concentrated on how to identify such manipulated media or information manually along with automatically; thus conquering the complicated forgery methodologies with effortlessly obtainable technologically enhanced instruments. However, high complexity affects the developed methods. Presently, it is complicated to resolve the issue of the speed-accuracy trade-off. For tackling these challenges, this article put… More >

  • Open Access

    ARTICLE

    A Data-Driven Oil Production Prediction Method Based on the Gradient Boosting Decision Tree Regression

    Hongfei Ma1,*, Wenqi Zhao2, Yurong Zhao1, Yu He1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1773-1790, 2023, DOI:10.32604/cmes.2022.020498 - 20 September 2022

    Abstract Accurate prediction of monthly oil and gas production is essential for oil enterprises to make reasonable production plans, avoid blind investment and realize sustainable development. Traditional oil well production trend prediction methods are based on years of oil field production experience and expertise, and the application conditions are very demanding. With the rapid development of artificial intelligence technology, big data analysis methods are gradually applied in various sub-fields of the oil and gas reservoir development. Based on the data-driven artificial intelligence algorithm Gradient Boosting Decision Tree (GBDT), this paper predicts the initial single-layer production by More >

  • Open Access

    ARTICLE

    Pre Screening of Cervical Cancer Through Gradient Boosting Ensemble Learning Method

    S. Priya1,*, N. K. Karthikeyan1, D. Palanikkumar2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2673-2685, 2023, DOI:10.32604/iasc.2023.028599 - 17 August 2022

    Abstract In recent years, cervical cancer is one of the most common diseases which occur in any woman regardless of any age. This is the deadliest disease since there were no symptoms shown till it is diagnosed to be the last stage. For women at a certain age, it is better to have a proper screening for cervical cancer. In most underdeveloped nations, it is very difficult to have frequent scanning for cervical cancer. Data Mining and machine learning methodologies help widely in finding the important causes for cervical cancer. The proposed work describes a multi-class More >

  • Open Access

    ARTICLE

    Prediction of Alzheimer’s Using Random Forest with Radiomic Features

    Anuj Singh*, Raman Kumar, Arvind Kumar Tiwari

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 513-530, 2023, DOI:10.32604/csse.2023.029608 - 16 August 2022

    Abstract Alzheimer’s disease is a non-reversible, non-curable, and progressive neurological disorder that induces the shrinkage and death of a specific neuronal population associated with memory formation and retention. It is a frequently occurring mental illness that occurs in about 60%–80% of cases of dementia. It is usually observed between people in the age group of 60 years and above. Depending upon the severity of symptoms the patients can be categorized in Cognitive Normal (CN), Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD). Alzheimer’s disease is the last phase of the disease where the brain is severely… More >

  • Open Access

    ARTICLE

    Predictive-Analysis-based Machine Learning Model for Fraud Detection with Boosting Classifiers

    M. Valavan, S. Rita*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 231-245, 2023, DOI:10.32604/csse.2023.026508 - 16 August 2022

    Abstract Fraud detection for credit/debit card, loan defaulters and similar types is achievable with the assistance of Machine Learning (ML) algorithms as they are well capable of learning from previous fraud trends or historical data and spot them in current or future transactions. Fraudulent cases are scant in the comparison of non-fraudulent observations, almost in all the datasets. In such cases detecting fraudulent transaction are quite difficult. The most effective way to prevent loan default is to identify non-performing loans as soon as possible. Machine learning algorithms are coming into sight as adept at handling such More >

  • Open Access

    ARTICLE

    An Intrusion Detection System for SDN Using Machine Learning

    G. Logeswari*, S. Bose, T. Anitha

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 867-880, 2023, DOI:10.32604/iasc.2023.026769 - 06 June 2022

    Abstract Software Defined Networking (SDN) has emerged as a promising and exciting option for the future growth of the internet. SDN has increased the flexibility and transparency of the managed, centralized, and controlled network. On the other hand, these advantages create a more vulnerable environment with substantial risks, culminating in network difficulties, system paralysis, online banking frauds, and robberies. These issues have a significant detrimental impact on organizations, enterprises, and even economies. Accuracy, high performance, and real-time systems are necessary to achieve this goal. Using a SDN to extend intelligent machine learning methodologies in an Intrusion… More >

  • Open Access

    ARTICLE

    Weather Forecasting Prediction Using Ensemble Machine Learning for Big Data Applications

    Hadil Shaiba1, Radwa Marzouk2, Mohamed K Nour3, Noha Negm4,5, Anwer Mustafa Hilal6,*, Abdullah Mohamed7, Abdelwahed Motwakel6, Ishfaq Yaseen6, Abu Sarwar Zamani6, Mohammed Rizwanullah6

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3367-3382, 2022, DOI:10.32604/cmc.2022.030067 - 16 June 2022

    Abstract The agricultural sector’s day-to-day operations, such as irrigation and sowing, are impacted by the weather. Therefore, weather constitutes a key role in all regular human activities. Weather forecasting must be accurate and precise to plan our activities and safeguard ourselves as well as our property from disasters. Rainfall, wind speed, humidity, wind direction, cloud, temperature, and other weather forecasting variables are used in this work for weather prediction. Many research works have been conducted on weather forecasting. The drawbacks of existing approaches are that they are less effective, inaccurate, and time-consuming. To overcome these issues,… More >

  • Open Access

    ARTICLE

    Grasshopper KUWAHARA and Gradient Boosting Tree for Optimal Features Classifications

    Rabab Hamed M. Aly1,*, Aziza I. Hussein2, Kamel H. Rahouma3

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3985-3997, 2022, DOI:10.32604/cmc.2022.025862 - 29 March 2022

    Abstract This paper aims to design an optimizer followed by a Kawahara filter for optimal classification and prediction of employees’ performance. The algorithm starts by processing data by a modified K-means technique as a hierarchical clustering method to quickly obtain the best features of employees to reach their best performance. The work of this paper consists of two parts. The first part is based on collecting data of employees to calculate and illustrate the performance of each employee. The second part is based on the classification and prediction techniques of the employee performance. This model is More >

  • Open Access

    ARTICLE

    Ensemble Learning Based Collaborative Filtering with Instance Selection and Enhanced Clustering

    G. Parthasarathy1,*, S. Sathiya Devi2

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2419-2434, 2022, DOI:10.32604/cmc.2022.019805 - 07 December 2021

    Abstract Recommender system is a tool to suggest items to the users from the extensive history of the user's feedback. Though, it is an emerging research area concerning academics and industries, where it suffers from sparsity, scalability, and cold start problems. This paper addresses sparsity, and scalability problems of model-based collaborative recommender system based on ensemble learning approach and enhanced clustering algorithm for movie recommendations. In this paper, an effective movie recommendation system is proposed by Classification and Regression Tree (CART) algorithm, enhanced Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) algorithm and truncation method. In… More >

Displaying 11-20 on page 2 of 38. Per Page