Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Graph Attention Networks for Skin Lesion Classification with CNN-Driven Node Features

    Ghadah Naif Alwakid1, Samabia Tehsin2,*, Mamoona Humayun3,*, Asad Farooq2, Ibrahim Alrashdi1, Amjad Alsirhani1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069162 - 10 November 2025

    Abstract Skin diseases affect millions worldwide. Early detection is key to preventing disfigurement, lifelong disability, or death. Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance, and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks (CNNs). We frame skin lesion recognition as graph-based reasoning and, to ensure fair evaluation and avoid data leakage, adopt a strict lesion-level partitioning strategy. Each image is first over-segmented using SLIC (Simple Linear Iterative Clustering) to produce perceptually homogeneous superpixels. These superpixels form the nodes of a region-adjacency graph whose edges encode… More >

  • Open Access

    ARTICLE

    UGEA-LMD: A Continuous-Time Dynamic Graph Representation Enhancement Framework for Lateral Movement Detection

    Jizhao Liu, Yuanyuan Shao*, Shuqin Zhang, Fangfang Shan, Jun Li

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.068998 - 10 November 2025

    Abstract Lateral movement represents the most covert and critical phase of Advanced Persistent Threats (APTs), and its detection still faces two primary challenges: sample scarcity and “cold start” of new entities. To address these challenges, we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework (UGEA-LMD). First, the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution, enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem. Second, in the embedding space, we model the dependency structure among… More >

  • Open Access

    ARTICLE

    Vulnerability2Vec: A Graph-Embedding Approach for Enhancing Vulnerability Classification

    Myoung-oh Choi1, Mincheol Shin1, Hyonjun Kang1, Ka Lok Man2, Mucheol Kim1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3191-3212, 2025, DOI:10.32604/cmes.2025.068723 - 30 September 2025

    Abstract The escalating complexity and heterogeneity of modern energy systems—particularly in smart grid and distributed energy infrastructures—has intensified the need for intelligent and scalable security vulnerability classification. To address this challenge, we propose Vulnerability2Vec, a graph-embedding-based framework designed to enhance the automated classification of security vulnerabilities that threaten energy system resilience. Vulnerability2Vec converts Common Vulnerabilities and Exposures (CVE) text explanations to semantic graphs, where nodes represent CVE IDs and key terms (nouns, verbs, and adjectives), and edges capture co-occurrence relationships. Then, it embeds the semantic graphs to a low-dimensional vector space with random-walk sampling and skip-gram More >

  • Open Access

    ARTICLE

    TB-Graph: Enhancing Encrypted Malicious Traffic Classification through Relational Graph Attention Networks

    Ming Liu, Qichao Yang, Wenqing Wang, Shengli Liu*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2985-3004, 2025, DOI:10.32604/cmc.2024.059417 - 17 February 2025

    Abstract The proliferation of internet traffic encryption has become a double-edged sword. While it significantly enhances user privacy, it also inadvertently shields cyber-attacks from detection, presenting a formidable challenge to cybersecurity. Traditional machine learning and deep learning techniques often fall short in identifying encrypted malicious traffic due to their inability to fully extract and utilize the implicit relational and positional information embedded within data packets. This limitation has led to an unresolved challenge in the cybersecurity community: how to effectively extract valuable insights from the complex patterns of traffic packet transmission. Consequently, this paper introduces the… More >

  • Open Access

    ARTICLE

    Position-Aware and Subgraph Enhanced Dynamic Graph Contrastive Learning on Discrete-Time Dynamic Graph

    Jian Feng*, Tian Liu, Cailing Du

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2895-2909, 2024, DOI:10.32604/cmc.2024.056434 - 18 November 2024

    Abstract Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph representation learning to eliminate the dependence of labels. However, existing studies neglect positional information when learning discrete snapshots, resulting in insufficient network topology learning. At the same time, due to the lack of appropriate data augmentation methods, it is difficult to capture the evolving patterns of the network effectively. To address the above problems, a position-aware and subgraph enhanced dynamic graph contrastive learning method is proposed for discrete-time dynamic graphs. Firstly, the global snapshot is built based on the historical snapshots… More >

  • Open Access

    ARTICLE

    Heterophilic Graph Neural Network Based on Spatial and Frequency Domain Adaptive Embedding Mechanism

    Lanze Zhang, Yijun Gu*, Jingjie Peng

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1701-1731, 2024, DOI:10.32604/cmes.2023.045129 - 29 January 2024

    Abstract Graph Neural Networks (GNNs) play a significant role in tasks related to homophilic graphs. Traditional GNNs, based on the assumption of homophily, employ low-pass filters for neighboring nodes to achieve information aggregation and embedding. However, in heterophilic graphs, nodes from different categories often establish connections, while nodes of the same category are located further apart in the graph topology. This characteristic poses challenges to traditional GNNs, leading to issues of “distant node modeling deficiency” and “failure of the homophily assumption”. In response, this paper introduces the Spatial-Frequency domain Adaptive Heterophilic Graph Neural Networks (SFA-HGNN), which… More >

  • Open Access

    ARTICLE

    GRATDet: Smart Contract Vulnerability Detector Based on Graph Representation and Transformer

    Peng Gong1,2,3, Wenzhong Yang2,3,*, Liejun Wang2,3, Fuyuan Wei2,3, KeZiErBieKe HaiLaTi2,3, Yuanyuan Liao2,3

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1439-1462, 2023, DOI:10.32604/cmc.2023.038878 - 30 August 2023

    Abstract Smart contracts have led to more efficient development in finance and healthcare, but vulnerabilities in contracts pose high risks to their future applications. The current vulnerability detection methods for contracts are either based on fixed expert rules, which are inefficient, or rely on simplistic deep learning techniques that do not fully leverage contract semantic information. Therefore, there is ample room for improvement in terms of detection precision. To solve these problems, this paper proposes a vulnerability detector based on deep learning techniques, graph representation, and Transformer, called GRATDet. The method first performs swapping, insertion, and symbolization… More >

  • Open Access

    ARTICLE

    Knowledge Graph Representation Learning Based on Automatic Network Search for Link Prediction

    Zefeng Gu, Hua Chen*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2497-2514, 2023, DOI:10.32604/cmes.2023.024332 - 23 November 2022

    Abstract Link prediction, also known as Knowledge Graph Completion (KGC), is the common task in Knowledge Graphs (KGs) to predict missing connections between entities. Most existing methods focus on designing shallow, scalable models, which have less expressive than deep, multi-layer models. Furthermore, most operations like addition, matrix multiplications or factorization are handcrafted based on a few known relation patterns in several well-known datasets, such as FB15k, WN18, etc. However, due to the diversity and complex nature of real-world data distribution, it is inherently difficult to preset all latent patterns. To address this issue, we propose KGE-ANS, More >

  • Open Access

    ARTICLE

    Future Event Prediction Based on Temporal Knowledge Graph Embedding

    Zhipeng Li1,2, Shanshan Feng3,*, Jun Shi2, Yang Zhou2, Yong Liao1,2, Yangzhao Yang2, Yangyang Li4, Nenghai Yu1, Xun Shao5

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2411-2423, 2023, DOI:10.32604/csse.2023.026823 - 01 August 2022

    Abstract Accurate prediction of future events brings great benefits and reduces losses for society in many domains, such as civil unrest, pandemics, and crimes. Knowledge graph is a general language for describing and modeling complex systems. Different types of events continually occur, which are often related to historical and concurrent events. In this paper, we formalize the future event prediction as a temporal knowledge graph reasoning problem. Most existing studies either conduct reasoning on static knowledge graphs or assume knowledges graphs of all timestamps are available during the training process. As a result, they cannot effectively… More >

  • Open Access

    ARTICLE

    Improved Density Peaking Algorithm for Community Detection Based on Graph Representation Learning

    Jiaming Wang2, Xiaolan Xie1,2,*, Xiaochun Cheng3, Yuhan Wang2

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 997-1008, 2022, DOI:10.32604/csse.2022.027005 - 09 May 2022

    Abstract

    There is a large amount of information in the network data that we can exploit. It is difficult for classical community detection algorithms to handle network data with sparse topology. Representation learning of network data is usually paired with clustering algorithms to solve the community detection problem. Meanwhile, there is always an unpredictable distribution of class clusters output by graph representation learning. Therefore, we propose an improved density peak clustering algorithm (ILDPC) for the community detection problem, which improves the local density mechanism in the original algorithm and can better accommodate class clusters of different

    More >

Displaying 1-10 on page 1 of 12. Per Page