Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (189)
  • Open Access

    ARTICLE

    Stress Analysis of 3D Generally Anisotropic Elastic Solids Using the Boundary Element Method

    C. L. Tan1, Y.C. Shiah2, C.W. Lin2

    CMES-Computer Modeling in Engineering & Sciences, Vol.41, No.3, pp. 195-214, 2009, DOI:10.3970/cmes.2009.041.195

    Abstract The explicit, closed-form expressions of the Green's functions for generally anisotropic elastic solids in three-dimensions that have been derived using Stroh's formalism are employed in a formulation of the boundary element method (BEM). Unlike several other existing schemes, the evaluation of these fundamental solutions does not require further numerical integration in the BEM algorithm; they have surprisingly not been implemented previously. Three numerical examples are presented to demonstrate the veracity of the implementation and the general applicability of the BEM for the 3D elastic stress analysis of generally anisotropic solids. The results are compared with known solutions in the literature… More >

  • Open Access

    ARTICLE

    A boundary element formulation for incremental nonlinear elastic deformation of compressible solids

    Sergia Colli1, Massimiliano Gei1, Davide Bigoni1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.40, No.1, pp. 29-62, 2009, DOI:10.3970/cmes.2009.040.029

    Abstract Incremental plane strain deformations superimposed upon a uniformly stressed and deformed nonlinear elastic (compressible) body are treated by developing {\it ad hoc} boundary integral equations that, discretized, lead to a novel boundary element technique. The approach is a generalization to compressible elasticity of results obtained by Brun, Capuani, and Bigoni (2003, Comput. Methods Appl. Mech. Engrg. 192, 2461-2479), and is based on a Green's function here obtained through the plane-wave expansion method. New expressions for Green's tractions are determined, where singular terms are solved in closed form, a feature permitting the development of a optimized numerical code. An application of… More >

  • Open Access

    ARTICLE

    Derivation of Anti-Plane Dynamic Green's Function for Several Circular Inclusions with Imperfect Interfaces

    Jeng-Tzong Chen1, Jia-Nan Ke

    CMES-Computer Modeling in Engineering & Sciences, Vol.29, No.3, pp. 111-136, 2008, DOI:10.3970/cmes.2008.029.111

    Abstract A null-field integral equation is employed to derive the two-dimensional antiplane dynamic Green's functions for a circular inclusion with an imperfect interface. We employ the linear spring model with vanishing thickness to characterize the imperfect interface. Analytical expressions of displacement and stress fields due to time-harmonic antiplane line forces located either in the unbounded matrix or in the circular inclusion are presented. To fully capture the circular geometries, degenerate- kernel expressions of fundamental solutions in the polar coordinate and Fourier series for boundary densities are adopted. Good agreement is made after comparing with the analytical solution derived by Wang and… More >

  • Open Access

    ARTICLE

    Slow viscous motion of a solid particle in a spherical cavity

    A. Sellier1

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.3, pp. 165-180, 2008, DOI:10.3970/cmes.2008.025.165

    Abstract The slow viscous and either imposed or gravity-driven migration of a solid arbitrarily-shaped particle suspended in a Newtonian liquid bounded by a spherical cavity is calculated using two different boundary element approaches. Each advocated method appeals to a few boundary-integral equations and, by contrast with previous works, also holds for non-spherical particles. The first procedure puts usual free-space Stokeslets on both the cavity and particle surfaces whilst the second one solely spreads specific Stokeslets obtained elsewhere in Oseen (1927) on the particle's boundary. Each approach receives a numerical implementation which is found to be in excellent agreement with accurate results… More >

  • Open Access

    ARTICLE

    Strain Energy on the Surface of an Anisotropic Half-Space Substrate: Effect of Quantum-Dot Shape and Depth

    E. Pan1,2, Y. Zhang2, P. W. Chung3, M. Denda4

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 157-168, 2008, DOI:10.3970/cmes.2008.024.157

    Abstract Quantum-dot (QD) semiconductor synthesis is one of the most actively investigated fields in strain energy band engineering. The induced strain fields influence ordering and alignment, and the subsequent surface formations determine the energy bandgap of the device. The effect of the strains on the surface formations is computationally expensive to simulate, thus analytical solutions to the QD-induced strain fields are very appealing and useful. In this paper we present an analytical method for calculating the QD-induced elastic field in anisotropic half-space semiconductor substrates. The QD is assumed to be of any polyhedral shape, and its surface is approximated efficiently by… More >

  • Open Access

    ARTICLE

    A Micromechanics Analysis of Nanoscale Graphite Platelet-Reinforced Epoxy Using Defect Green's Function

    B. Yang1,2, S.-C. Wong3, S. Qu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 81-94, 2008, DOI:10.3970/cmes.2008.024.081

    Abstract In the modeling of overall property of composites, the effect of particle interaction has been either numerically taken into account within a (representative) volume element of a small number of particles or neglected/ignored in order for efficient solution to a large system of particles. In this study, we apply the point-defect Green's function (GF) to take into account the effect of particle interaction. It is applicable to small volume fractions of particles (within 10 %). The high efficiency of the method enables a simulation of a large system of particles with generally elastic anisotropy, arbitrary shape and composition, and arbitrary… More >

  • Open Access

    ARTICLE

    Two Dimensional Dynamic Green's Functions for Piezoelectric Materials

    Kuang-Chong Wu1, Shyh-Haur Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.20, No.3, pp. 147-156, 2007, DOI:10.3970/cmes.2007.020.147

    Abstract A formulation for two-dimensional self-similar anisotropic elastodyamics problems is generalized to piezoelectric materials. In the formulation the general solution of the displacements is expressed in terms of the eigenvalues and eigenvectors of a related eight-dimensional eigenvalue problem. The present formulation can be used to derive analytic solutions directly without the need of performing integral transforms as required in Cagniard-de Hoop method. The method is applied to derive explicit dynamic Green's functions. Some analytic results for hexagonal 6mm materials are also derived. Numerical examples for the quartz are illustrated. More >

  • Open Access

    ARTICLE

    Thermo-Poro-Elastostatic Green's Functions for Unsaturated Soils

    Ehsan Jabbari1, Behrouz Gatmiri2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.1, pp. 31-44, 2007, DOI:10.3970/cmes.2007.018.031

    Abstract In this paper after a discussion about the evolution of the unsaturated soils' governing differential equations and a brief history of the Green's functions for porous media, the governing equations, i.e., the mathematical model in the presence of heat effects are presented and simplified so as the derivation of the associated Green's functions be in the realm of possibility. The thermal two- and three-dimensional, full- and half-space Green's functions for unsaturated porous media, although in a relatively simplified form, are being introduced for the first time, following the previous works of the authors. The derived Green's functions have been demonstrated… More >

  • Open Access

    ARTICLE

    An Efficient Time-Domain BEM/FEM Coupling for Acoustic-Elastodynamic Interaction Problems

    D. Soares Jr.1, W.J. Mansur1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.8, No.2, pp. 153-164, 2005, DOI:10.3970/cmes.2005.008.153

    Abstract A coupling procedure is described to perform time-domain numerical analyses of dynamic fluid-structure interaction. The fluid sub-domains, where acoustic waves propagate, are modeled by the Boundary Element Method (BEM), which is quite suitable to deal with linear homogeneous unbounded domain problems. The Finite Element Method (FEM), on the other hand, models the structure sub-domains, adopting a time marching scheme based on implicit Green's functions. The BEM/FEM coupling algorithm here developed is very efficient, eliminating the drawbacks of standard and iterative coupling procedures. Stability and accuracy features are improved by the adoption of different time steps in each sub-domain of the… More >

  • Open Access

    ARTICLE

    Integrated Green's Function Molecular Dynamics Method for Multiscale Modeling of Nanostructures: Application to Au Nanoisland in Cu1

    V.K. Tewary2, D.T. Read2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.4, pp. 359-372, 2004, DOI:10.3970/cmes.2004.006.359

    Abstract An integrated Green's function and molecular dynamics technique is developed for multiscale modeling of a nanostructure in a semi-infinite crystal lattice. The equilibrium configuration of the atoms inside and around the nanostructure is calculated by using molecular dynamics that accounts for nonlinear interatomic forces. The molecular dynamics is coupled with the lattice statics Green's function for a large crystallite containing a million or more atoms. This gives a fully atomistic description of a nanostructure in a large crystallite that includes the effect of nonlinear forces. The lattice statics Green's function is then related to the anisotropic continuum Green's function that… More >

Displaying 171-180 on page 18 of 189. Per Page