Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access


    Data Mining Approach Based on Hierarchical Gaussian Mixture Representation Model

    Hanan A. Hosni Mahmoud1,*, Alaaeldin M. Hafez2, Fahd Althukair3

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3727-3741, 2023, DOI:10.32604/iasc.2023.031442

    Abstract Infinite Gaussian mixture process is a model that computes the Gaussian mixture parameters with order. This process is a probability density distribution with adequate training data that can converge to the input density curve. In this paper, we propose a data mining model namely Beta hierarchical distribution that can solve axial data modeling. A novel hierarchical Two-Hyper-Parameter Poisson stochastic process is developed to solve grouped data modelling. The solution uses data mining techniques to link datum in groups by linking their components. The learning techniques are novel presentations of Gaussian modelling that use prior knowledge of the representation hyper-parameters and… More >

  • Open Access


    Usability and Security of Arabic Text-based CAPTCHA Using Visual Cryptography

    Suliman A. Alsuhibany*, Meznah Alquraishi

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 421-440, 2022, DOI:10.32604/csse.2022.018929

    Abstract Recently, with the spread of online services involving websites, attackers have the opportunity to expose these services to malicious actions. To protect these services, A Completely Automated Public Turing Test to Tell Computers and Humans Apart (CAPTCHA) is a proposed technique. Since many Arabic countries have developed their online services in Arabic, Arabic text-based CAPTCHA has been introduced to improve the usability for their users. Moreover, there exist a visual cryptography (VC) technique which can be exploited in order to enhance the security of text-based CAPTCHA by encrypting a CAPTCHA image into two shares and decrypting it by asking the… More >

  • Open Access


    Hybrid Trainable System for Writer Identification of Arabic Handwriting

    Saleem Ibraheem Saleem*, Adnan Mohsin Abdulazeez

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3353-3372, 2021, DOI:10.32604/cmc.2021.016342

    Abstract Writer identification (WI) based on handwritten text structures is typically focused on digital characteristics, with letters/strokes representing the information acquired from the current research in the integration of individual writing habits/styles. Previous studies have indicated that a word’s attributes contribute to greater recognition than the attributes of a character or stroke. As a result of the complexity of Arabic handwriting, segmenting and separating letters and strokes from a script poses a challenge in addition to WI schemes. In this work, we propose new texture features for WI based on text. The histogram of oriented gradient (HOG) features are modified to… More >

  • Open Access


    A New Segmentation Framework for Arabic Handwritten Text Using Machine Learning Techniques

    Saleem Ibraheem Saleem1,*, Adnan Mohsin Abdulazeez1, Zeynep Orman2

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2727-2754, 2021, DOI:10.32604/cmc.2021.016447

    Abstract The writer identification (WI) of handwritten Arabic text is now of great concern to intelligence agencies following the recent attacks perpetrated by known Middle East terrorist organizations. It is also a useful instrument for the digitalization and attribution of old text to other authors of historic studies, including old national and religious archives. In this study, we proposed a new affective segmentation model by modifying an artificial neural network model and making it suitable for the binarization stage based on blocks. This modified method is combined with a new effective rotation model to achieve an accurate segmentation through the analysis… More >

  • Open Access


    Recognition of Offline Handwritten Arabic Words Using a Few Structural Features

    Abderrahmane Saidi*, Abdelmouneim Moulay Lakhdar, Mohammed Beladgham

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2875-2889, 2021, DOI:10.32604/cmc.2021.013744

    Abstract Handwriting recognition is one of the most significant problems in pattern recognition, many studies have been proposed to improve this recognition of handwritten text for different languages. Yet, Fewer studies have been done for the Arabic language and the processing of its texts remains a particularly distinctive problem due to the variability of writing styles and the nature of Arabic scripts compared to other scripts. The present paper suggests a feature extraction technique for offline Arabic handwriting recognition. A handwriting recognition system for Arabic words using a few important structural features and based on a Radial Basis Function (RBF) neural… More >

  • Open Access


    Highly Accurate Recognition of Handwritten Arabic Decimal Numbers Based on a Self-Organizing Maps Approach

    Amin Alqudah1,2, Hussein R. Al-Zoubi2, Mahmood A. Al-Khassaweneh2,3, Mohammed Al-Qodah1

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 493-505, 2018, DOI:10.31209/2018.100000005

    Abstract Handwritten numeral recognition is one of the most popular fields of research in automation because it is used in many applications. Indeed, automation has continually received substantial attention from researchers. Therefore, great efforts have been made to devise accurate recognition methods with high recognition ratios. In this paper, we propose a method for integrating the correlation coefficient with a Self-Organizing Maps (SOM)-based technique to recognize offline handwritten Arabic decimal digits. The simulation results show very high recognition rates compared with the rates achieved by other existing methods. More >

  • Open Access


    SVM Model Selection Using PSO for Learning Handwritten Arabic Characters

    Mamouni El Mamoun1,*, Zennaki Mahmoud1, Sadouni Kaddour1

    CMC-Computers, Materials & Continua, Vol.61, No.3, pp. 995-1008, 2019, DOI:10.32604/cmc.2019.08081

    Abstract Using Support Vector Machine (SVM) requires the selection of several parameters such as multi-class strategy type (one-against-all or one-against-one), the regularization parameter C, kernel function and their parameters. The choice of these parameters has a great influence on the performance of the final classifier. This paper considers the grid search method and the particle swarm optimization (PSO) technique that have allowed to quickly select and scan a large space of SVM parameters. A comparative study of the SVM models is also presented to examine the convergence speed and the results of each model. SVM is applied to handwritten Arabic characters… More >

Displaying 1-10 on page 1 of 7. Per Page