Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (435)
  • Open Access

    ARTICLE

    Using Pharmacokinetic Modeling and Electronic Health Record Data to Predict Clinical and Safety Outcomes after Methylprednisolone Exposure during Cardiopulmonary Bypass in Neonates

    Henry P. Foote1, Huali Wu2, Stephen J. Balevic1,2, Elizabeth J. Thompson1,2, Kevin D. Hill1,2, Eric M. Graham3, Christoph P. Hornik1,2, Karan R. Kumar1,2,*

    Congenital Heart Disease, Vol.18, No.3, pp. 295-313, 2023, DOI:10.32604/chd.2023.026262

    Abstract Background: Infants undergoing cardiac surgery with cardiopulmonary bypass (CPB) frequently receive intra-operative methylprednisolone (MP) to suppress CPB-related inflammation; however, the optimal dosing strategy and efficacy of MP remain unclear. Methods: We retrospectively analyzed all infants under 90 days-old who received intra-operative MP for cardiac surgery with CPB from 2014–2017 at our institution. We combined real-world dosing data from the electronic health record (EHR) and two previously developed population pharmacokinetic/pharmacodynamic models to simulate peak concentration (Cmax) and area under the concentration-time curve for 24 h (AUC24) for MP and the inflammatory cytokines interleukin-6 (IL-6) and interleukin-10 (IL-10). We evaluated the relationships… More > Graphic Abstract

    Using Pharmacokinetic Modeling and Electronic Health Record Data to Predict Clinical and Safety Outcomes after Methylprednisolone Exposure during Cardiopulmonary Bypass in Neonates

  • Open Access

    ARTICLE

    Deletion and Recovery Scheme of Electronic Health Records Based on Medical Certificate Blockchain

    Baowei Wang1,2,*, Neng Wang1, Yuxiao Zhang1, Zenghui Xu1, Junhao Zhang1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 849-859, 2023, DOI:10.32604/cmc.2023.039749

    Abstract The trusted sharing of Electronic Health Records (EHRs) can realize the efficient use of medical data resources. Generally speaking, EHRs are widely used in blockchain-based medical data platforms. EHRs are valuable private assets of patients, and the ownership belongs to patients. While recent research has shown that patients can freely and effectively delete the EHRs stored in hospitals, it does not address the challenge of record sharing when patients revisit doctors. In order to solve this problem, this paper proposes a deletion and recovery scheme of EHRs based on Medical Certificate Blockchain. This paper uses cross-chain technology to connect the… More >

  • Open Access

    ARTICLE

    Medical Image Fusion Based on Anisotropic Diffusion and Non-Subsampled Contourlet Transform

    Bhawna Goyal1,*, Ayush Dogra2, Rahul Khoond1, Dawa Chyophel Lepcha1, Vishal Goyal3, Steven L. Fernandes4

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 311-327, 2023, DOI:10.32604/cmc.2023.038398

    Abstract The synthesis of visual information from multiple medical imaging inputs to a single fused image without any loss of detail and distortion is known as multimodal medical image fusion. It improves the quality of biomedical images by preserving detailed features to advance the clinical utility of medical imaging meant for the analysis and treatment of medical disorders. This study develops a novel approach to fuse multimodal medical images utilizing anisotropic diffusion (AD) and non-subsampled contourlet transform (NSCT). First, the method employs anisotropic diffusion for decomposing input images to their base and detail layers to coarsely split two features of input… More >

  • Open Access

    ARTICLE

    Analyzing Arabic Twitter-Based Patient Experience Sentiments Using Multi-Dialect Arabic Bidirectional Encoder Representations from Transformers

    Sarab AlMuhaideb*, Yasmeen AlNegheimish, Taif AlOmar, Reem AlSabti, Maha AlKathery, Ghala AlOlyyan

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 195-220, 2023, DOI:10.32604/cmc.2023.038368

    Abstract Healthcare organizations rely on patients’ feedback and experiences to evaluate their performance and services, thereby allowing such organizations to improve inadequate services and address any shortcomings. According to the literature, social networks and particularly Twitter are effective platforms for gathering public opinions. Moreover, recent studies have used natural language processing to measure sentiments in text segments collected from Twitter to capture public opinions about various sectors, including healthcare. The present study aimed to analyze Arabic Twitter-based patient experience sentiments and to introduce an Arabic patient experience corpus. The authors collected 12,400 tweets from Arabic patients discussing patient experiences related to… More >

  • Open Access

    ARTICLE

    Effectiveness of Deep Learning Models for Brain Tumor Classification and Segmentation

    Muhammad Irfan1, Ahmad Shaf2,*, Tariq Ali2, Umar Farooq2, Saifur Rahman1, Salim Nasar Faraj Mursal1, Mohammed Jalalah1, Samar M. Alqhtani3, Omar AlShorman4

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 711-729, 2023, DOI:10.32604/cmc.2023.038176

    Abstract A brain tumor is a mass or growth of abnormal cells in the brain. In children and adults, brain tumor is considered one of the leading causes of death. There are several types of brain tumors, including benign (non-cancerous) and malignant (cancerous) tumors. Diagnosing brain tumors as early as possible is essential, as this can improve the chances of successful treatment and survival. Considering this problem, we bring forth a hybrid intelligent deep learning technique that uses several pre-trained models (Resnet50, Vgg16, Vgg19, U-Net) and their integration for computer-aided detection and localization systems in brain tumors. These pre-trained and integrated… More >

  • Open Access

    ARTICLE

    Tackling Faceless Killers: Toxic Comment Detection to Maintain a Healthy Internet Environment

    Semi Park, Kyungho Lee*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 813-826, 2023, DOI:10.32604/cmc.2023.035313

    Abstract According to BBC News, online hate speech increased by 20% during the COVID-19 pandemic. Hate speech from anonymous users can result in psychological harm, including depression and trauma, and can even lead to suicide. Malicious online comments are increasingly becoming a social and cultural problem. It is therefore critical to detect such comments at the national level and detect malicious users at the corporate level. To achieve a healthy and safe Internet environment, studies should focus on institutional and technical topics. The detection of toxic comments can create a safe online environment. In this study, to detect malicious comments, we… More >

  • Open Access

    ARTICLE

    IoMT-Based Smart Healthcare of Elderly People Using Deep Extreme Learning Machine

    Muath Jarrah1, Hussam Al Hamadi4,*, Ahmed Abu-Khadrah2, Taher M. Ghazal1,3

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 19-33, 2023, DOI:10.32604/cmc.2023.032775

    Abstract The Internet of Medical Things (IoMT) enables digital devices to gather, infer, and broadcast health data via the cloud platform. The phenomenal growth of the IoMT is fueled by many factors, including the widespread and growing availability of wearables and the ever-decreasing cost of sensor-based technology. There is a growing interest in providing solutions for elderly people living assistance in a world where the population is rising rapidly. The IoMT is a novel reality transforming our daily lives. It can renovate modern healthcare by delivering a more personalized, protective, and collaborative approach to care. However, the current healthcare system for… More >

  • Open Access

    ARTICLE

    Energy and Latency Optimization in Edge-Fog-Cloud Computing for the Internet of Medical Things

    Hatem A. Alharbi1, Barzan A. Yosuf2, Mohammad Aldossary3,*, Jaber Almutairi4

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1299-1319, 2023, DOI:10.32604/csse.2023.039367

    Abstract In this paper, the Internet of Medical Things (IoMT) is identified as a promising solution, which integrates with the cloud computing environment to provide remote health monitoring solutions and improve the quality of service (QoS) in the healthcare sector. However, problems with the present architectural models such as those related to energy consumption, service latency, execution cost, and resource usage, remain a major concern for adopting IoMT applications. To address these problems, this work presents a four-tier IoMT-edge-fog-cloud architecture along with an optimization model formulated using Mixed Integer Linear Programming (MILP), with the objective of efficiently processing and placing IoMT… More >

  • Open Access

    ARTICLE

    HSPM: A Better Model to Effectively Preventing Open-Source Projects from Dying

    Zhifang Liao1, Fangying Fu1, Yiqi Zhao1, Sui Tan2,3,*, Zhiwu Yu2,3, Yan Zhang4

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 431-452, 2023, DOI:10.32604/csse.2023.038087

    Abstract With the rapid development of Open-Source (OS), more and more software projects are maintained and developed in the form of OS. These Open-Source projects depend on and influence each other, gradually forming a huge OS project network, namely an Open-Source Software ECOsystem (OSSECO). Unfortunately, not all OS projects in the open-source ecosystem can be healthy and stable in the long term, and more projects will go from active to inactive and gradually die. In a tightly connected ecosystem, the death of one project can potentially cause the collapse of the entire ecosystem network. How can we effectively prevent such situations… More >

  • Open Access

    ARTICLE

    Ensemble Learning for Fetal Health Classification

    Mesfer Al Duhayyim1,*, Sidra Abbas2, Abdullah Al Hejaili3, Natalia Kryvinska4,*, Ahmad Almadhor5, Huma Mughal6

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 823-842, 2023, DOI:10.32604/csse.2023.037488

    Abstract : Cardiotocography (CTG) represents the fetus’s health inside the womb during labor. However, assessment of its readings can be a highly subjective process depending on the expertise of the obstetrician. Digital signals from fetal monitors acquire parameters (i.e., fetal heart rate, contractions, acceleration). Objective:: This paper aims to classify the CTG readings containing imbalanced healthy, suspected, and pathological fetus readings. Method:: We perform two sets of experiments. Firstly, we employ five classifiers: Random Forest (RF), Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LGBM) without over-sampling to classify CTG readings into three categories:… More >

Displaying 1-10 on page 1 of 435. Per Page  

Share Link