Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (232)
  • Open Access

    ARTICLE

    Machine Learning Stroke Prediction in Smart Healthcare: Integrating Fuzzy K-Nearest Neighbor and Artificial Neural Networks with Feature Selection Techniques

    Abdul Ahad1,2, Ira Puspitasari1,3,*, Jiangbin Zheng2, Shamsher Ullah4, Farhan Ullah5, Sheikh Tahir Bakhsh6, Ivan Miguel Pires7,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5115-5134, 2025, DOI:10.32604/cmc.2025.062605 - 06 March 2025

    Abstract This research explores the use of Fuzzy K-Nearest Neighbor (F-KNN) and Artificial Neural Networks (ANN) for predicting heart stroke incidents, focusing on the impact of feature selection methods, specifically Chi-Square and Best First Search (BFS). The study demonstrates that BFS significantly enhances the performance of both classifiers. With BFS preprocessing, the ANN model achieved an impressive accuracy of 97.5%, precision and recall of 97.5%, and an Receiver Operating Characteristics (ROC) area of 97.9%, outperforming the Chi-Square-based ANN, which recorded an accuracy of 91.4%. Similarly, the F-KNN model with BFS achieved an accuracy of 96.3%, precision More >

  • Open Access

    ARTICLE

    Deep Learning-Based Decision Support System for Predicting Pregnancy Risk Levels through Cardiotocograph (CTG) Imaging Analysis

    Ali Hasan Dakheel1,*, Mohammed Raheem Mohammed1, Zainab Ali Abd Alhuseen1, Wassan Adnan Hashim2,3

    Intelligent Automation & Soft Computing, Vol.40, pp. 195-220, 2025, DOI:10.32604/iasc.2025.061622 - 28 February 2025

    Abstract The prediction of pregnancy-related hazards must be accurate and timely to safeguard mother and fetal health. This study aims to enhance risk prediction in pregnancy with a novel deep learning model based on a Long Short-Term Memory (LSTM) generator, designed to capture temporal relationships in cardiotocography (CTG) data. This methodology integrates CTG signals with demographic characteristics and utilizes preprocessing techniques such as noise reduction, normalization, and segmentation to create high-quality input for the model. It uses convolutional layers to extract spatial information, followed by LSTM layers to model sequences for superior predictive performance. The overall More >

  • Open Access

    REVIEW

    Particle Swarm Optimization: Advances, Applications, and Experimental Insights

    Laith Abualigah*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1539-1592, 2025, DOI:10.32604/cmc.2025.060765 - 17 February 2025

    Abstract Particle Swarm Optimization (PSO) has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields. This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications, but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms. Covering six strategic areas, which include Data Mining, Machine Learning, Engineering Design, Energy Systems, Healthcare, and Robotics, the study demonstrates the versatility and effectiveness of the PSO. Experimental results are, however, used to show the strong and More >

  • Open Access

    ARTICLE

    Novel Feature Extractor Framework in Conjunction with Supervised Three Class-XGBoost Algorithm for Osteosarcoma Detection from Whole Slide Medical Histopathology Images

    Tanzila Saba1, Muhammad Mujahid1, Shaha Al-Otaibi2, Noor Ayesha3, Amjad Rehman Khan1,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3337-3353, 2025, DOI:10.32604/cmc.2025.060163 - 17 February 2025

    Abstract Osteosarcomas are malignant neoplasms derived from undifferentiated osteogenic mesenchymal cells. It causes severe and permanent damage to human tissue and has a high mortality rate. The condition has the capacity to occur in any bone; however, it often impacts long bones like the arms and legs. Prompt identification and prompt intervention are essential for augmenting patient longevity. However, the intricate composition and erratic placement of osteosarcoma provide difficulties for clinicians in accurately determining the scope of the afflicted area. There is a pressing requirement for developing an algorithm that can automatically detect bone tumors with… More >

  • Open Access

    ARTICLE

    Diagnosing Retinal Eye Diseases: A Novel Transfer Learning Approach

    Mohammed Salih Ahmed1, Atta Rahman2,*, Yahya Alhabboub1, Khalid Alzahrani1, Hassan Baragbah1, Basel Altaha1, Hussein Alkatout1, Sardar Asad Ali Biabani3,4, Rashad Ahmed5, Aghiad Bakry2

    Intelligent Automation & Soft Computing, Vol.40, pp. 149-175, 2025, DOI:10.32604/iasc.2025.059080 - 12 February 2025

    Abstract This study rigorously evaluates the potential of transfer learning in diagnosing retinal eye diseases using advanced models such as YOLOv8, Xception, ConvNeXtTiny, and VGG16. All models were trained on the esteemed RFMiD dataset, which includes images classified into six critical categories: Diabetic Retinopathy (DR), Macular Hole (MH), Diabetic Neuropathy (DN), Optic Disc Changes (ODC), Tesselated Fundus (TSLN), and normal cases. The research emphasizes enhancing model performance by prioritizing recall metrics, a crucial strategy aimed at minimizing false negatives in medical diagnostics. To address the challenge of imbalanced data, we implemented effective preprocessing techniques, including cropping,… More >

  • Open Access

    REVIEW

    Leveraging Artificial Intelligence to Achieve Sustainable Public Healthcare Services in Saudi Arabia: A Systematic Literature Review of Critical Success Factors

    Rakesh Kumar1,*, Ajay Singh2, Ahmed Subahi Ahmed Kassar3, Mohammed Ismail Humaida3, Sudhanshu Joshi4, Manu Sharma5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1289-1349, 2025, DOI:10.32604/cmes.2025.059152 - 27 January 2025

    Abstract This review aims to analyze the development and impact of Artificial Intelligence (AI) in the context of Saudi Arabia’s public healthcare system to fulfill Vision 2030 objectives. It is extensively devoted to AI technology deployment relevant to disease management, healthcare delivery, epidemiology, and policy-making. However, its AI is culturally sensitive and ethically grounded in Islam. Based on the PRISMA framework, an SLR evaluated primary academic literature, cases, and practices of Saudi Arabia’s AI implementation in the public healthcare sector. Instead, it categorizes prior research based on how AI can work, the issues it poses, and… More >

  • Open Access

    REVIEW

    Data-Driven Healthcare: The Role of Computational Methods in Medical Innovation

    Hariharasakthisudhan Ponnarengan1,*, Sivakumar Rajendran2, Vikas Khalkar3, Gunapriya Devarajan4, Logesh Kamaraj5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 1-48, 2025, DOI:10.32604/cmes.2024.056605 - 17 December 2024

    Abstract The purpose of this review is to explore the intersection of computational engineering and biomedical science, highlighting the transformative potential this convergence holds for innovation in healthcare and medical research. The review covers key topics such as computational modelling, bioinformatics, machine learning in medical diagnostics, and the integration of wearable technology for real-time health monitoring. Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems, while machine learning algorithms have improved the accuracy of disease prediction and diagnosis. The synergy between bioinformatics and computational techniques has led to breakthroughs in More >

  • Open Access

    REVIEW

    A Comprehensive Survey on Federated Learning Applications in Computational Mental Healthcare

    Vajratiya Vajrobol1, Geetika Jain Saxena2, Amit Pundir2, Sanjeev Singh1, Akshat Gaurav3, Savi Bansal4,5, Razaz Waheeb Attar6, Mosiur Rahman7, Brij B. Gupta7,8,9,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 49-90, 2025, DOI:10.32604/cmes.2024.056500 - 17 December 2024

    Abstract Mental health is a significant issue worldwide, and the utilization of technology to assist mental health has seen a growing trend. This aims to alleviate the workload on healthcare professionals and aid individuals. Numerous applications have been developed to support the challenges in intelligent healthcare systems. However, because mental health data is sensitive, privacy concerns have emerged. Federated learning has gotten some attention. This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems. It explores various dimensions of federated learning in mental health, such as More >

  • Open Access

    ARTICLE

    A costing and health-related quality of life study of high intensity focused ultrasound in primary treatment of localized low or intermediate risk prostate cancer in Ontario

    Bassem Toeama1, Nathan Perlis2, Paul Grootendorst1, William Orovan3, Emmanuel Papadimitropoulos1,4

    Canadian Journal of Urology, Vol.31, No.4, pp. 11963-11970, 2024

    Abstract Introduction: Prostate cancer is the third leading cause of death from cancer among Canadian men. High intensity focused ultrasound (HIFU) is a novel approach for primary treatment of localized prostate cancer. Little is known, however, about its costs. We aimed to collect the direct costs and health-related quality of life (HRQoL) data of HIFU in primary treatment of localized low and intermediate risk prostate cancer in Ontario.
    Materials and methods: We collected direct costs and HRQoL data of 20 patients with localized low or intermediate risk prostate cancer who received whole gland HIFU at a privately owned… More >

  • Open Access

    ARTICLE

    Evaluating the Effectiveness of Graph Convolutional Network for Detection of Healthcare Polypharmacy Side Effects

    Omer Nabeel Dara1,*, Tareq Abed Mohammed2, Abdullahi Abdu Ibrahim1

    Intelligent Automation & Soft Computing, Vol.39, No.6, pp. 1007-1033, 2024, DOI:10.32604/iasc.2024.058736 - 30 December 2024

    Abstract Healthcare polypharmacy is routinely used to treat numerous conditions; however, it often leads to unanticipated bad consequences owing to complicated medication interactions. This paper provides a graph convolutional network (GCN)-based model for identifying adverse effects in polypharmacy by integrating pharmaceutical data from electronic health records (EHR). The GCN framework analyzes the complicated links between drugs to forecast the possibility of harmful drug interactions. Experimental assessments reveal that the proposed GCN model surpasses existing machine learning approaches, reaching an accuracy (ACC) of 91%, an area under the receiver operating characteristic curve (AUC) of 0.88, and an More >

Displaying 1-10 on page 1 of 232. Per Page