Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (288)
  • Open Access

    ARTICLE

    Real-Time Mouth State Detection Based on a BiGRU-CLPSO Hybrid Model with Facial Landmark Detection for Healthcare Monitoring Applications

    Mong-Fong Horng1,#, Thanh-Lam Nguyen1,#, Thanh-Tuan Nguyen2,*, Chin-Shiuh Shieh1,*, Lan-Yuen Guo3, Chen-Fu Hung4, Chun-Chih Lo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075064 - 29 January 2026

    Abstract The global population is rapidly expanding, driving an increasing demand for intelligent healthcare systems. Artificial intelligence (AI) applications in remote patient monitoring and diagnosis have achieved remarkable progress and are emerging as a major development trend. Among these applications, mouth motion tracking and mouth-state detection represent an important direction, providing valuable support for diagnosing neuromuscular disorders such as dysphagia, Bell’s palsy, and Parkinson’s disease. In this study, we focus on developing a real-time system capable of monitoring and detecting mouth state that can be efficiently deployed on edge devices. The proposed system integrates the Facial… More >

  • Open Access

    ARTICLE

    AI-Powered Anomaly Detection and Cybersecurity in Healthcare IoT with Fog-Edge

    Fatima Al-Quayed*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074799 - 29 January 2026

    Abstract The rapid proliferation of Internet of Things (IoT) devices in critical healthcare infrastructure has introduced significant security and privacy challenges that demand innovative, distributed architectural solutions. This paper proposes FE-ACS (Fog-Edge Adaptive Cybersecurity System), a novel hierarchical security framework that intelligently distributes AI-powered anomaly detection algorithms across edge, fog, and cloud layers to optimize security efficacy, latency, and privacy. Our comprehensive evaluation demonstrates that FE-ACS achieves superior detection performance with an AUC-ROC of 0.985 and an F1-score of 0.923, while maintaining significantly lower end-to-end latency (18.7 ms) compared to cloud-centric (152.3 ms) and fog-only (34.5… More >

  • Open Access

    ARTICLE

    Explainable Ensemble Learning Framework for Early Detection of Autism Spectrum Disorder: Enhancing Trust, Interpretability and Reliability in AI-Driven Healthcare

    Menwa Alshammeri1,2,*, Noshina Tariq3, NZ Jhanji4,5, Mamoona Humayun6, Muhammad Attique Khan7

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074627 - 29 January 2026

    Abstract Artificial Intelligence (AI) is changing healthcare by helping with diagnosis. However, for doctors to trust AI tools, they need to be both accurate and easy to understand. In this study, we created a new machine learning system for the early detection of Autism Spectrum Disorder (ASD) in children. Our main goal was to build a model that is not only good at predicting ASD but also clear in its reasoning. For this, we combined several different models, including Random Forest, XGBoost, and Neural Networks, into a single, more powerful framework. We used two different types More >

  • Open Access

    ARTICLE

    CardioForest: An Explainable Ensemble Learning Model for Automatic Wide QRS Complex Tachycardia Diagnosis from ECG

    Vaskar Chakma1,#, Xiaolin Ju1,#, Heling Cao2, Xue Feng3, Xiaodong Ji3, Haiyan Pan3,*, Gao Zhan1,*

    Journal of Intelligent Medicine and Healthcare, Vol.4, pp. 37-86, 2026, DOI:10.32604/jimh.2026.075201 - 23 January 2026

    Abstract Wide QRS Complex Tachycardia (WCT) is a life-threatening cardiac arrhythmia requiring rapid and accurate diagnosis. Traditional manual ECG interpretation is time-consuming and subject to inter-observer variability, while existing AI models often lack the clinical interpretability necessary for trusted deployment in emergency settings. We developed CardioForest, an optimized Random Forest ensemble model, for automated WCT detection from 12-lead ECG signals. The model was trained, tested, and validated using 10-fold cross-validation on 800,000 ten-second-long 12-lead Electrocardiogram (ECG) recordings from the MIMIC-IV dataset (15.46% WCT prevalence), with comparative evaluation against XGBoost, LightGBM, and Gradient Boosting models. Performance was… More >

  • Open Access

    ARTICLE

    Machine Learning Models for Predicting Smoking-Related Health Decline and Disease Risk

    Vaskar Chakma1,*, Md Jaheid Hasan Nerab1, Abdur Rouf1, Abu Sayed2, Hossem Md Saim3, Md. Nournabi Khan3

    Journal of Intelligent Medicine and Healthcare, Vol.4, pp. 1-35, 2026, DOI:10.32604/jimh.2026.074347 - 23 January 2026

    Abstract Smoking continues to be a major preventable cause of death worldwide, affecting millions through damage to the heart, metabolism, liver, and kidneys. However, current medical screening methods often miss the early warning signs of smoking-related health problems, leading to late-stage diagnoses when treatment options become limited. This study presents a systematic comparative evaluation of machine learning approaches for smoking-related health risk assessment, emphasizing clinical interpretability and practical deployment over algorithmic innovation. We analyzed health screening data from 55,691 individuals, examining various health indicators including body measurements, blood tests, and demographic information. We tested three advanced… More >

  • Open Access

    ARTICLE

    Enhanced COVID-19 and Viral Pneumonia Classification Using Customized EfficientNet-B0: A Comparative Analysis with VGG16 and ResNet50

    Williams Kyei*, Chunyong Yin, Kelvin Amos Nicodemas, Khagendra Darlami

    Journal on Artificial Intelligence, Vol.8, pp. 19-38, 2026, DOI:10.32604/jai.2026.074988 - 20 January 2026

    Abstract The COVID-19 pandemic has underscored the need for rapid and accurate diagnostic tools to differentiate respiratory infections from normal cases using chest X-rays (CXRs). Manual interpretation of CXRs is time-consuming and prone to errors, particularly in distinguishing COVID-19 from viral pneumonia. This research addresses these challenges by proposing a customized EfficientNet-B0 model for ternary classification (COVID-19, Viral Pneumonia, Normal) on the COVID-19 Radiography Database. Employing transfer learning with architectural modifications, including a tailored classification head and regularization techniques, the model achieves superior performance. Evaluated via accuracy, F1-score (macro-averaged), AUROC (macro-averaged), precision (macro-averaged), recall (macro-averaged), inference… More >

  • Open Access

    ARTICLE

    A Blockchain-Based Hybrid Framework for Secure and Scalable Electronic Health Record Management in In-Patient Follow-Up Tracking

    Ahsan Habib Siam1, Md. Ehsanul Haque1, Fahmid Al Farid2, Anindita Sutradhar3, Jia Uddin4,*, Sarina Mansor2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069718 - 12 January 2026

    Abstract As healthcare systems increasingly embrace digitalization, effective management of electronic health records (EHRs) has emerged as a critical priority, particularly in inpatient settings where data sensitivity and real-time access are paramount. Traditional EHR systems face significant challenges, including unauthorized access, data breaches, and inefficiencies in tracking follow-up appointments, which heighten the risk of misdiagnosis and medication errors. To address these issues, this research proposes a hybrid blockchain-based solution for securely managing EHRs, specifically designed as a framework for tracking inpatient follow-ups. By integrating QR code-enabled data access with a blockchain architecture, this innovative approach enhances… More >

  • Open Access

    ARTICLE

    A Decentralized Identity Framework for Secure Federated Learning in Healthcare

    Samuel Acheme*, Glory Nosawaru Edegbe

    Journal of Cyber Security, Vol.8, pp. 1-31, 2026, DOI:10.32604/jcs.2026.073923 - 07 January 2026

    Abstract Federated learning (FL) enables collaborative model training across decentralized datasets, thus maintaining the privacy of training data. However, FL remains vulnerable to malicious actors, posing significant risks in privacy-sensitive domains like healthcare. Previous machine learning trust frameworks, while promising, often rely on resource-intensive blockchain ledgers, introducing computational overhead and metadata leakage risks. To address these limitations, this study presents a novel Decentralized Identity (DID) framework for mutual authentication that establishes verifiable trust among participants in FL without dependence on centralized authorities or high-cost blockchain ledgers. The proposed system leverages Decentralized Identifiers (DIDs) and Verifiable Credentials… More >

  • Open Access

    REVIEW

    Transforming Healthcare with State-of-the-Art Medical-LLMs: A Comprehensive Evaluation of Current Advances Using Benchmarking Framework

    Himadri Nath Saha1, Dipanwita Chakraborty Bhattacharya2,*, Sancharita Dutta3, Arnab Bera3, Srutorshi Basuray4, Satyasaran Changdar5, Saptarshi Banerjee6, Jon Turdiev7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-56, 2026, DOI:10.32604/cmc.2025.070507 - 09 December 2025

    Abstract The emergence of Medical Large Language Models has significantly transformed healthcare. Medical Large Language Models (Med-LLMs) serve as transformative tools that enhance clinical practice through applications in decision support, documentation, and diagnostics. This evaluation examines the performance of leading Med-LLMs, including GPT-4Med, Med-PaLM, MEDITRON, PubMedGPT, and MedAlpaca, across diverse medical datasets. It provides graphical comparisons of their effectiveness in distinct healthcare domains. The study introduces a domain-specific categorization system that aligns these models with optimal applications in clinical decision-making, documentation, drug discovery, research, patient interaction, and public health. The paper addresses deployment challenges of Medical-LLMs, More >

  • Open Access

    REVIEW

    Human Behaviour Classification in Emergency Situations Using Machine Learning with Multimodal Data: A Systematic Review (2020–2025)

    Mirza Murad Baig1, Muhammad Rehan Faheem2,*, Lal Khan3,*, Hannan Adeel2, Syed Asim Ali Shah4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2895-2935, 2025, DOI:10.32604/cmes.2025.073172 - 23 December 2025

    Abstract With growing urban areas, the climate continues to change as a result of growing populations, and hence, the demand for better emergency response systems has become more important than ever. Human Behaviour Classification (HBC) systems have started to play a vital role by analysing data from different sources to detect signs of emergencies. These systems are being used in many critical areas like healthcare, public safety, and disaster management to improve response time and to prepare ahead of time. But detecting human behaviour in such stressful conditions is not simple; it often comes with noisy… More > Graphic Abstract

    Human Behaviour Classification in Emergency Situations Using Machine Learning with Multimodal Data: A Systematic Review (2020–2025)

Displaying 1-10 on page 1 of 288. Per Page