Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access


    Heart Disease Prediction Using Convolutional Neural Network with Elephant Herding Optimization

    P. Nandakumar, R. Subhashini*

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 57-75, 2024, DOI:10.32604/csse.2023.042294

    Abstract Heart disease is a major cause of death for many people in the world. Each year the death rate of people affected with heart disease increased a lot. Machine learning models have been widely used for the prediction of heart disease from the different University of California Irvine (UCI) Machine Learning Repositories. But, due to certain data, it predicts less accurately, whereas, for large data, its sub-model deep learning is used. Our literature work has identified that only traditional methods are used for the prediction of heart disease. It will produce less accuracy. To produce more efficacy, Euclidean Distance was… More >

  • Open Access


    An Improved Ensemble Learning Approach for Heart Disease Prediction Using Boosting Algorithms

    Shahid Mohammad Ganie1, Pijush Kanti Dutta Pramanik2, Majid Bashir Malik3, Anand Nayyar4, Kyung Sup Kwak5,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3993-4006, 2023, DOI:10.32604/csse.2023.035244

    Abstract Cardiovascular disease is among the top five fatal diseases that affect lives worldwide. Therefore, its early prediction and detection are crucial, allowing one to take proper and necessary measures at earlier stages. Machine learning (ML) techniques are used to assist healthcare providers in better diagnosing heart disease. This study employed three boosting algorithms, namely, gradient boost, XGBoost, and AdaBoost, to predict heart disease. The dataset contained heart disease-related clinical features and was sourced from the publicly available UCI ML repository. Exploratory data analysis is performed to find the characteristics of data samples about descriptive and inferential statistics. Specifically, it was… More >

  • Open Access


    Classifying Big Medical Data through Bootstrap Decision Forest Using Penalizing Attributes

    V. Gowri1,*, V. Vijaya Chamundeeswari2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3675-3690, 2023, DOI:10.32604/iasc.2023.035817

    Abstract Decision forest is a well-renowned machine learning technique to address the detection and prediction problems related to clinical data. But, the traditional decision forest (DF) algorithms have lower classification accuracy and cannot handle high-dimensional feature space effectively. In this work, we propose a bootstrap decision forest using penalizing attributes (BFPA) algorithm to predict heart disease with higher accuracy. This work integrates a significance-based attribute selection (SAS) algorithm with the BFPA classifier to improve the performance of the diagnostic system in identifying cardiac illness. The proposed SAS algorithm is used to determine the correlation among attributes and to select the optimum… More >

  • Open Access


    Explainable Heart Disease Prediction Using Ensemble-Quantum Machine Learning Approach

    Ghada Abdulsalam1, Souham Meshoul2,*, Hadil Shaiba3

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 761-779, 2023, DOI:10.32604/iasc.2023.032262

    Abstract Nowadays, quantum machine learning is attracting great interest in a wide range of fields due to its potential superior performance and capabilities. The massive increase in computational capacity and speed of quantum computers can lead to a quantum leap in the healthcare field. Heart disease seriously threatens human health since it is the leading cause of death worldwide. Quantum machine learning methods can propose effective solutions to predict heart disease and aid in early diagnosis. In this study, an ensemble machine learning model based on quantum machine learning classifiers is proposed to predict the risk of heart disease. The proposed… More >

  • Open Access


    DLMNN Based Heart Disease Prediction with PD-SS Optimization Algorithm

    S. Raghavendra1, Vasudev Parvati2, R. Manjula3, Ashok Kumar Nanda4, Ruby Singh5, D. Lakshmi6, S. Velmurugan7,*

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1353-1368, 2023, DOI:10.32604/iasc.2023.027977

    Abstract In contemporary medicine, cardiovascular disease is a major public health concern. Cardiovascular diseases are one of the leading causes of death worldwide. They are classified as vascular, ischemic, or hypertensive. Clinical information contained in patients’ Electronic Health Records (EHR) enables clinicians to identify and monitor heart illness. Heart failure rates have risen dramatically in recent years as a result of changes in modern lifestyles. Heart diseases are becoming more prevalent in today’s medical setting. Each year, a substantial number of people die as a result of cardiac pain. The primary cause of these deaths is the improper use of pharmaceuticals… More >

  • Open Access


    Modelling an Efficient Clinical Decision Support System for Heart Disease Prediction Using Learning and Optimization Approaches

    Sridharan Kannan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 677-694, 2022, DOI:10.32604/cmes.2022.018580

    Abstract With the worldwide analysis, heart disease is considered a significant threat and extensively increases the mortality rate. Thus, the investigators mitigate to predict the occurrence of heart disease in an earlier stage using the design of a better Clinical Decision Support System (CDSS). Generally, CDSS is used to predict the individuals’ heart disease and periodically update the condition of the patients. This research proposes a novel heart disease prediction system with CDSS composed of a clustering model for noise removal to predict and eliminate outliers. Here, the Synthetic Over-sampling prediction model is integrated with the cluster concept to balance the… More >

  • Open Access


    Heart Disease Classification Using Multiple K-PCA and Hybrid Deep Learning Approach

    S. Kusuma*, Dr. Jothi K. R

    Computer Systems Science and Engineering, Vol.41, No.3, pp. 1273-1289, 2022, DOI:10.32604/csse.2022.021741

    Abstract One of the severe health problems and the most common types of heart disease (HD) is Coronary heart disease (CHD). Due to the lack of a healthy lifestyle, HD would cause frequent mortality worldwide. If the heart attack occurs without any symptoms, it cannot be cured by an intelligent detection system. An effective diagnosis and detection of CHD should prevent human casualties. Moreover, intelligent systems employ clinical-based decision support approaches to assist physicians in providing another option for diagnosing and detecting HD. This paper aims to introduce a heart disease prediction model including phases like (i) Feature extraction, (ii) Feature… More >

  • Open Access


    An Improved Machine Learning Technique with Effective Heart Disease Prediction System

    Mohammad Tabrez Quasim1, Saad Alhuwaimel2,*, Asadullah Shaikh3, Yousef Asiri3, Khairan Rajab3, Rihem Farkh4,5, Khaled Al Jaloud4

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 4169-4181, 2021, DOI:10.32604/cmc.2021.015984

    Abstract Heart disease is the leading cause of death worldwide. Predicting heart disease is challenging because it requires substantial experience and knowledge. Several research studies have found that the diagnostic accuracy of heart disease is low. The coronary heart disorder determines the state that influences the heart valves, causing heart disease. Two indications of coronary heart disorder are strep throat with a red persistent skin rash, and a sore throat covered by tonsils or strep throat. This work focuses on a hybrid machine learning algorithm that helps predict heart attacks and arterial stiffness. At first, we achieved the component perception measured… More >

  • Open Access


    Fusion-Based Machine Learning Architecture for Heart Disease Prediction

    Muhammad Waqas Nadeem1,2, Hock Guan Goh1,*, Muhammad Adnan Khan3, Muzammil Hussain4, Muhammad Faheem Mushtaq5, Vasaki a/p Ponnusamy1

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2481-2496, 2021, DOI:10.32604/cmc.2021.014649

    Abstract The contemporary evolution in healthcare technologies plays a considerable and significant role to improve medical services and save human lives. Heart disease or cardiovascular disease is the most fatal and complex disease which it is hardly to be detected through our naked eyes, as numerous people have been suffering from this disease globally. Heart attacks occur when the ranges of vital signs such as blood pressure, pulse rate, and body temperature exceed their normal values. The efficient diagnosis of heart diseases could play a substantial role in the field of cardiology, while diagnostic time could be reduced. It has been… More >

  • Open Access


    Intelligent Cloud Based Heart Disease Prediction System Empowered with Supervised Machine Learning

    Muhammad Adnan Khan1, *, Sagheer Abbas2, Ayesha Atta2, 3, Allah Ditta4, Hani Alquhayz5, Muhammad Farhan Khan6, Atta-ur-Rahman7, Rizwan Ali Naqvi8

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 139-151, 2020, DOI:10.32604/cmc.2020.011416

    Abstract The innovation in technologies related to health facilities today is increasingly helping to manage patients with different diseases. The most fatal of these is the issue of heart disease that cannot be detected from a naked eye, and attacks as soon as the human exceeds the allowed range of vital signs like pulse rate, body temperature, and blood pressure. The real challenge is to diagnose patients with more diagnostic accuracy and in a timely manner, followed by prescribing appropriate treatments and keeping prescription errors to a minimum. In developing countries, the domain of healthcare is progressing day by day using… More >

Displaying 1-10 on page 1 of 10. Per Page