Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    Impacts of Heat Flux Distribution, Sloping Magnetic Field and Magnetic Nanoparticles on the Natural Convective Flow Contained in a Square Cavity

    Latifa M. Al-Balushi, M. M. Rahman*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 441-463, 2020, DOI:10.32604/fdmp.2020.08551

    Abstract In the present paper, the effect of the heat flux distribution on the natural convective flow inside a square cavity in the presence of a sloping magnetic field and magnetic nanoparticles is explored numerically. The nondimensional governing equations are solved in the framework of a finite element method implemented using the Galerkin approach. The role played by numerous model parameters in influencing the emerging thermal and concentration fields is examined; among them are: the location of the heat source and its lengthH*, the magnitude of the thermal Rayleigh number, the nanoparticles shape and volume fraction, and the Hartmann number. It… More >

  • Open Access

    ARTICLE

    Unsteady Natural Convection within an Attic-Shaped Space Subject to Sinusoidal Heat Flux on Inclined Walls

    Suvash C. Saha1,*, Ali M. Sefidan2, Atta Sojoudi3

    Energy Engineering, Vol.117, No.1, pp. 1-17, 2020, DOI:10.32604/EE.2020.010418

    Abstract Free convection inside an attic enclosure in which sinusoidal heat flux applied on the inclined walls and a constant temperature applied on the base wall has been investigated numerically to demonstrate the primary flow characteristics and heat transfer within the attic enclosure over daily routine cycles. To solve the governing equations, the finite volume technique has been utilized. After performing the grid independency and time step size tests, the roles of Rayleigh number (Ra) and the attic aspect ratio (AR) on the unsteady flow structure and heat transfer phenomenon are explained for a constant Prandtl number (0.72) for the air.… More >

  • Open Access

    ABSTRACT

    Influence of thrust vectoring on radiative heat flux from plume flow

    S.N. Lee1, S.W. Baek1, K.M. Kim2, M.J. Yu3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.1, pp. 1-8, 2010, DOI:10.3970/icces.2010.015.001

    Abstract A finite volume method with nongray gases is applied to examine the radiative base heating due to plume which is changed by mechanical deflection. Numerical approaches are made to predict the effect of TVC. The radiative properties within plume flow are modeled with the weighted sum of 4 gray gases. The exhaust plume is considered as an absorbing and emitting medium with no scattering. Flow field is molded with using Preconditioned Navier-Stokes(N-S) algorithms with multi-block. The Geometric Conservation Law(GCL) is considered to compute the nozzle moving mechanism. The radiative base heating is changed by the nozzle deflection angle. More >

  • Open Access

    ARTICLE

    An Adaptive Extended Kalman Filter Incorporating State Model Uncertainty for Localizing a High Heat Flux Spot Source Using an Ultrasonic Sensor Array

    M.R. Myers1, A.B. Jorge2, D.E. Yuhas3, D.G. Walker1

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.3, pp. 221-248, 2012, DOI:10.3970/cmes.2012.083.221

    Abstract An adaptive extended Kalman filter is developed and investigated for a transient heat transfer problem in which a high heat flux spot source is applied on one side of a thin plate and ultrasonic pulse time of flight is measured between spatially separated transducers on the opposite side of the plate. The novel approach is based on the uncertainty in the state model covariance and leverages trends in the extended Kalman filter covariance to drive changes to the state model covariance during convergence. This work is an integral part of an effort to develop a system capable of locating the… More >

  • Open Access

    ARTICLE

    Development of Heat Input Estimation Technique for Simulation of Shell Forming by Line-Heating

    N. Osawa1, K. Hashimoto1, J. Sawamura1, J. Kikuchi2, Y. Deguchi2, T. Yamaura2

    CMES-Computer Modeling in Engineering & Sciences, Vol.20, No.1, pp. 43-54, 2007, DOI:10.3970/cmes.2007.020.043

    Abstract A new hypothesis regarding heat transmission during line heating is proposed. It states that the distribution of the temperature of the gas adjacent to the plate, TG, and the overall local heat transfer coefficient, α, depend only on the distance from the torch. An identification technique for TG and α is developed. The validity of the employed hypothesis and the proposed technique is demonstrated by comparing the measured and identified TG during a spot heating test. The plate temperature calculated by direct heat conduction analysis closely approximates the one measured for the spot and line heating tests, when TG and… More >

  • Open Access

    ARTICLE

    Three-dimensional Numerical Study of the Effect of Heating Sources Dimension on Natural Convection in a Cavity Submitted to Constant Heat Flux

    L. Belarche1,2, B. Abourida1, S. Smolen3

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.2, pp. 157-170, 2015, DOI:10.3970/fdmp.2015.011.157

    Abstract Natural convection in a cubical cavity, discretely heated is studied numerically using a three-dimensional finite volume formulation. Two heating square portions are placed on the vertical wall of the enclosure, while the rest of the considered wall is adiabatic. The opposite vertical wall is maintained at a cold uniform temperature and the other walls are adiabatic. Effects of the heating sections dimensions ε (0.15 ≤ ε ≤ 0.35) and the Rayleigh number Ra (103Ra ≤ 107) on the fluid flow and the heat transfer within the cavity are studied. The obtained results show that the flow intensity and… More >

  • Open Access

    ARTICLE

    Statistical Second-order Two-scale Method for Nonstationary Coupled Conduction-Radiation Heat Transfer Problem of Random Porous Materials

    Zhiqiang Yang1, Yufeng Nie2, Yatao Wu2, Zihao Yang2, Yi Sun1

    CMC-Computers, Materials & Continua, Vol.43, No.1, pp. 21-48, 2014, DOI:10.3970/cmc.2014.043.021

    Abstract This paper develops a novel statistical second-order two-scale (SSOTS) method to predict the heat transfer performances of three-dimensional (3D) porous materials with random distribution. Firstly, the mesoscopic configuration for the structure with random distribution is briefly characterized Secondly, the SSOTS formulas for calculating effective thermal conductivity parameters, temperature field and heat flux densities are derived by means of construction way. Then, the algorithm procedure based on the SSOTS method is described in details. Finally, numerical results for porous materials with varying probability distribution models are calculated by SSOTS algorithm, and compared with the data by finite element method (FEM) in… More >

  • Open Access

    ARTICLE

    Heat Conduction Analysis of Nonhomogeneous Functionally Graded Three-Layer Media

    Chien-Ching Ma1,2, Yi-Tzu Chen2

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 177-201, 2013, DOI:10.3970/cmc.2013.036.177

    Abstract Functionally graded material (FGM) is a particulate composite with continuously changing its thermal and mechanical properties in order to raise the bonding strength in the discrete composite made from different phases of material constituents. Furthermore, FGM is a potent tool to create an intermediate layer in metal–ceramic composites to avoid the properties discontinuities and reduce, thereby, the residual stresses. For the nonhomogeneous problem, the mathematical derivation is much complicated than the homogeneous case since the material properties vary with coordinate. To analyze the problem, the Fourier transform is applied and the general solution in transform domain is obtained. The inverse… More >

  • Open Access

    ARTICLE

    Singular Superposition/Boundary Element Method for Reconstruction of Multi-dimensional Heat Flux Distributions with Application to Film Cooling Holes

    Silieti, M.1, Divo, E.2, Kassab, A.J.1

    CMC-Computers, Materials & Continua, Vol.12, No.2, pp. 121-144, 2009, DOI:10.3970/cmc.2009.012.121

    Abstract A hybrid singularity superposition/boundary element-based inverse problem method for the reconstruction of multi-dimensional heat flux distributions is developed. Cauchy conditions are imposed at exposed surfaces that are readily reached for measurements while convective boundary conditions are unknown at surfaces that are not amenable to measurements such as the walls of the cooling holes. The purpose of the inverse analysis is to determine the heat flux distribution along cooling hole surfaces. This is accomplished in an iterative process by distributing a set of singularities (sinks) inside the physical boundaries of the cooling hole (usually along cooling hole centerline) with a given… More >

Displaying 31-40 on page 4 of 39. Per Page