Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    Effects of Viscous Dissipation and Periodic Heat Flux on MHD Free Convection Channel Flow with Heat Generation

    Mustafa Abdullah*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 141-156, 2024, DOI:10.32604/fhmt.2024.046788

    Abstract This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic (MHD) flow through a vertical channel with heat generation. A theoretical approach is employed. The channel is exposed to a perpendicular magnetic field, while one side experiences a periodic heat flow, and the other side undergoes a periodic temperature variation. Numerical solutions for the governing partial differential equations are obtained using a finite difference approach, complemented by an eigenfunction expansion method for analytical solutions. Visualizations and discussions illustrate how different variables affect the flow velocity and temperature fields. This offers comprehensive insights into MHD flow behavior… More >

  • Open Access

    ARTICLE

    Steady Natural Convection from a Vertical Hot Plate with Variable Radiation

    Dewi Puspitasari1, Diah Kusuma Pratiwi1, Pramadhony Amran2, Kaprawi Sahim1,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 305-315, 2024, DOI:10.32604/fhmt.2023.041882

    Abstract The natural convection from a vertical hot plate with radiation and constant flux is studied numerically to know the velocity and temperature distribution characteristics over a vertical hot plate. The governing equations of the natural convection in two-dimension are solved with the implicit finite difference method, whereas the discretized equations are solved with the iterative relaxation method. The results show that the velocity and the temperature increase along the vertical wall. The influence of the radiation parameter in the boundary layer is significant in increasing the velocity and temperature profiles. The velocity profiles increase with the increase of the radiation… More >

  • Open Access

    ARTICLE

    NATURAL CONVECTIVE HEAT TRANSFER FROM A NARROW VERTICAL FLAT PLATE WITH A UNIFORM SURFACE HEAT FLUX AND WITH DIFFERENT PLATE EDGE CONDITIONS

    Patrick H. Oosthuizen*, Jane T. Paul

    Frontiers in Heat and Mass Transfer, Vol.1, No.1, pp. 1-8, 2010, DOI:10.5098/hmt.v1.1.3006

    Abstract Natural convective heat transfer from narrow vertical plates which have a uniform surface heat flux has studied. With a narrow plate the heat transfer rate is dependent on the flow near the vertical edges of the plate. The magnitude of the edge effects will depend on the conditions existing near the edges of the plate. Three situations have here been considered these being a heated plate imbedded in a large plane adiabatic surface, the surfaces of the heated plane and the adiabatic surface being in the same plane, a heated plate with plane adiabatic surfaces above and below the heated… More >

  • Open Access

    ARTICLE

    POOL BOILING CHF FOR PENTANE, HEXANE, METHANOL, FC-72, FC-87, AND R113 ON A SMOOTH HORIZONTAL SURFACE

    Cheng-Kang Guan, James F. Klausner*, Renwei Mei

    Frontiers in Heat and Mass Transfer, Vol.2, No.4, pp. 1-6, 2011, DOI:10.5098/hmt.v2.4.3002

    Abstract Pool boiling critical heat flux (CHF) has been measured for pentane, hexane, methanol, FC-72, FC-87, and R113 on a 25.4 mm diameter smooth brass horizontal surface at five different reduced pressures ranging from 0.01to 0.24. The CHF data are compared with various established CHF models as well as the new mechanistic CHF lift-off model recently proposed by the authors. The dependence of CHF on pressure is examined, and it is found that the lift-off model gives a reasonably good prediction of changes in CHF with step changes in the reduced pressure. The R113 and FC-72 boiling curves suggest that a… More >

  • Open Access

    REVIEW

    A REVIEW OF RECENT PROGRESS ON NANO/MICRO SCALE NUCLEATE BOILING FUNDAMENTALS

    J.N. Chunga,†, Tailian Chenb, Shalabh C. Marooc

    Frontiers in Heat and Mass Transfer, Vol.2, No.2, pp. 1-19, 2011, DOI:10.5098/hmt.v2.2.3004

    Abstract Recent research progress in the area of nano/micro scale nucleate boiling is reviewed and an up-to-date summary is provided with a focus on the advances of fundamental boiling physics. This review examines nano/micro scale pool boiling experimental and theoretical/numerical work reported in the open literature. On the experimental side, the topics covered are moving contact line, critical heat flux, boiling curve, nucleation, single bubble boiling cycle, bubble coalescence boiling cycle, heater size effect, nanofluid, and nanoscale-structured heater surface. For the theoretical/numerical work, continuum mechanics modeling of the micro-region and molecular dynamics modeling of the nano-region are included. More >

  • Open Access

    REVIEW

    CRITICAL HEAT FLUX DURING FLOW BOILING IN MINI AND MICROCHANNEL-A STATE OF THE ART REVIEW

    P. K. Das*, S. Chakraborty, S. Bhaduri

    Frontiers in Heat and Mass Transfer, Vol.3, No.1, pp. 1-17, 2012, DOI:10.5098/hmt.v3.1.3008

    Abstract A state of the art review of critical heat flux during flow boiling through mini and microchannels has been provided based on the open literature. This review mainly examines three aspects, namely the experimental investigations, the available correlations and the state of prediction using those correlations and finally the proposed physical mechanisms as well as the theoretical models. Before discussing the specific literature on microchannels, a brief overview of critical heat flux for pool and flow boiling is provided. The review has been concluded with a summary of the available information on this topic and the need for future research. More >

  • Open Access

    ARTICLE

    EFFECT OF MAGNETIC FIELD ON INDIRECT NATURAL CONVECTION FLOW ABOVE A HORIZONTAL HOT FLAT PLATE

    Tapas Ray Mahapatraa, Sumanta Siduib, Samir Kumar Nandyc,*

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-15, 2014, DOI:10.5098/hmt.5.15

    Abstract The effect of variable transverse magnetic field on steady two-dimensional indirect natural convection flow of an incompressible viscous fluid over a horizontal hot flat plate is theoretically studied. The governing partial differential equations are transformed into ordinary ones by similarity transformation and solved numerically using fourth order Runge-Kutta method with shooting technique. The results are obtained for the skin friction coefficient and the local Nusselt number as well as the dimensionless velocities, temperature for some values of the magnetic parameter (M) subject to either prescribed (constant or variable) surface temperature or prescribed (variable) heat flux. It is seen that the… More >

  • Open Access

    ARTICLE

    MHD FREE CONVECTIVE FLOW PAST AN IMPULSIVELY MOVING VERTICAL PLATE WITH RAMPED HEAT FLUX THROUGH POROUS MEDIUM IN THE PRESENCE OF INCLINED MAGNETIC FIELD

    G. S. Setha,*, P. K. Mandala, A. J. Chamkhab

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-12, 2016, DOI:10.5098/hmt.7.23

    Abstract A theoretical investigation of unsteady hydromagnetic free convection flow with heat and mass transfer of a viscous, incompressible, electrically conducting, optically thick radiating and chemically reactive fluid near an impulsively moving vertical plate with ramped heat flux through fluid saturated porous medium in the presence of inclined magnetic field is carried out. Exact solutions of the governing equations for fluid velocity, fluid temperature and species concentration are obtained by Laplace transform technique. The expressions for the skin-friction, rate of mass transfer at the plate and plate temperature are also derived. Numerical results for fluid velocity, fluid temperature and species concentration… More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF NATURAL CONVECTION FROM A PAIR OF HOT CYLINDERS IN A COLD SQUARE ENCLOSURE IN DIFFERENT BOUNDARY CONDITIONS

    Niki Rezazadeh, Rezvan Abdi*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-6, 2016, DOI:10.5098/hmt.7.30

    Abstract This study investigates the heat transfer in the mode of natural convection from a pair of hot cylinders to a cold square enclosure. Effects of boundary conditions of the enclosure on the rate of heat transfer from a pair of isothermal hot cylinders are investigated at a Rayleigh number of 105 . The cylinders are arranged in a horizontal array at the middle height of enclosure. The commercial software, Fluent (V.6.3.26), is utilized to solve the problem using the Finite Volume Method. The streamlines as well as isothermal lines of the problem are reported. Moreover, the local Nusselt number on… More >

  • Open Access

    ARTICLE

    INFLUENCE OF CATTANEO-CHRISTOV HEAT FLUX MODEL ON MHD HYPERBOLIC TANGENT FLUID OVER A MOVING POROUS SURFACE

    Z. Iqbal, Ehtsham Azhar* , E. N. Maraj, Bilal Ahmad

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-7, 2017, DOI:10.5098/hmt.8.25

    Abstract Present investigation represent the study of Cattaneo-Christov heat flux model on boundary layer flow of hyperbolic tangent fluid which is generalized non-Newtonian fluid model over a continuously moving porous surface with a parallel free stream velocity. Mathematical formulation is completed in the presence of Magneto-hydrodynamics (MHD). Suitable relations transform the partial differential equations into the ordinary differential equations. Nonlinear flow analysis is computed and velocity and temperature profiles are obtained by shooting algorithm. Graphs are plotted to analyze the behavior of various involved physical parameters. Furthermore both type of flows Sakaidis ( λ = 1) and Blasius flow (0 ≤… More >

Displaying 1-10 on page 1 of 39. Per Page