Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (477)
  • Open Access

    ARTICLE

    Heat Transfer in MHD Flow of Maxwell Fluid via Fractional Cattaneo-Friedrich Model: A Finite Difference Approach

    Muhammad Saqib1, Hanifa Hanif1, 2, T. Abdeljawad3, 4, 5, Ilyas Khan6, *, Sharidan Shafie1, Kottakkaran Sooppy Nisar7

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 1959-1973, 2020, DOI:10.32604/cmc.2020.011339 - 16 September 2020

    Abstract The idea of fractional derivatives is applied to several problems of viscoelastic fluid. However, most of these problems (fluid problems), were studied analytically using different integral transform techniques, as most of these problems are linear. The idea of the above fractional derivatives is rarely applied to fluid problems governed by nonlinear partial differential equations. Most importantly, in the nonlinear problems, either the fractional models are developed by artificial replacement of the classical derivatives with fractional derivatives or simple classical problems (without developing the fractional model even using artificial replacement) are solved. These problems were mostly… More >

  • Open Access

    ARTICLE

    A New Idea of Fractal-Fractional Derivative with Power Law Kernel for Free Convection Heat Transfer in a Channel Flow between Two Static Upright Parallel Plates

    Dolat Khan1, Gohar Ali1, Arshad Khan2, Ilyas Khan3, *, Yu-Ming Chu4, 5, Kottakkaran Sooppy Nisar6

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1237-1251, 2020, DOI:10.32604/cmc.2020.011492 - 20 August 2020

    Abstract Nowadays some new ideas of fractional derivatives have been used successfully in the present research community to study different types of mathematical models. Amongst them, the significant models of fluids and heat or mass transfer are on priority. Most recently a new idea of fractal-fractional derivative is introduced; however, it is not used for heat transfer in channel flow. In this article, we have studied this new idea of fractal fractional operators with power-law kernel for heat transfer in a fluid flow problem. More exactly, we have considered the free convection heat transfer for a… More >

  • Open Access

    ARTICLE

    Generalized Model of Blood Flow in a Vertical Tube with Suspension of Gold Nanomaterials: Applications in the Cancer Therapy

    Anees Imtiaz1, Oi-Mean Foong2, Aamina Aamina1, Nabeel Khan1, Farhad Ali3, 4, *, Ilyas Khan5

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 171-192, 2020, DOI:10.32604/cmc.2020.011397 - 23 July 2020

    Abstract Gold metallic nanoparticles are generally used within a lab as a tracer, to uncover on the presence of specific proteins or DNA in a sample, as well as for the recognition of various antibiotics. They are bio companionable and have properties to carry thermal energy to tumor cells by utilizing different clinical approaches. As the cancer cells are very smaller so for the infiltration, the properly sized nanoparticles have been injected in the blood. For this reason, gold nanoparticles are very effective. Keeping in mind the above applications, in the present work a generalized model… More >

  • Open Access

    ARTICLE

    Computational Analysis of the Oscillatory Mixed Convection Flow along a Horizontal Circular Cylinder in Thermally Stratified Medium

    Zia Ullah1, Muhammad Ashraf1, Saqib Zia2, Yuming Chu3, 4, Ilyas Khan5, *, Kottakkaran Sooppy Nisar6

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 109-123, 2020, DOI:10.32604/cmc.2020.011468 - 23 July 2020

    Abstract The present work emphasizes the significance of oscillatory mixed convection stratified fluid and heat transfer characteristics at different stations of non-conducting horizontally circular cylinder in the presence of thermally stratified medium. To remove the difficulties in illustrating the coupled PDE’s, the finite-difference scheme with efficient primitive-variable formulation is proposed to transform dimensionless equations. The numerical simulations of coupled non-dimensional equations are computed in terms velocity of fluid, temperature and magnetic field which are computed to examine the fluctuating components of skin friction, heat transfer and current density for various emerging parameters. The governing parameters namely, More >

  • Open Access

    ARTICLE

    Comparison of Thermal Performance for Two Types of ETFP System under Various Operation Schemes

    Lingtong Li1, Zaiguo Fu1, *, Benxiang Li2, Qunzhi Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.1, pp. 23-44, 2020, DOI:10.32604/cmes.2020.09299 - 19 June 2020

    Abstract The earth to fluid pipe (ETFP) system has been widely applied to various energy engineering. The numerical model of the heat transfer process in the ETFP system with a shallow-buried horizontal or a deep-buried vertical U-shape pipe adopted in practical engineering was established and the model distinctions were pointed out. The comparison of the thermal performance between the two types of ETFP system under various schemes was conducted on the basis of numerical prediction. The results showed that the thermal parameters of the ETFP system with a shallow-buried horizontal pipe were influenced by the inlet… More >

  • Open Access

    EDITORIAL

    Introduction to the Special Issue on Advances in Modeling and Simulation of Complex Heat Transfer and Fluid Flow

    Jingfa Li1, Liang Gong2, Yongtu Liang3, Zhiguo Qu4, Bo Yu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.1, pp. 1-4, 2020, DOI:10.32604/cmes.2020.011924 - 19 June 2020

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Experimental Study on Flow and Heat Transfer Characteristics of Nanofluids in a Triangular Tube at Different Rotation Angles

    Cong Qi1,2,*, Chengchao Wang1,2, Jinghua Tang1,2, Dongtai Han2

    Energy Engineering, Vol.117, No.2, pp. 63-78, 2020, DOI:10.32604/EE.2020.010433 - 23 April 2020

    Abstract Because of the poor thermal performance of ordinary tubes, a triangular tube was used to replace the smooth channel in the heat transfer system, and nanofluids were used to take the place of ordinary fluids as the heat transfer medium. High stability nanofluids were prepared, and an experimental set on flow and heat exchange was established. Effects of triangular tube rotation angles (α = 0°, 30°, 60°) as well as mass fractions of nanofluids (ω = 0.1%, 0.3%, 0.5%) on heat exchange and flow performance were experimentally considered at Reynolds numbers (Re = 800–8000). It… More >

  • Open Access

    ARTICLE

    Thermal Modeling and Analysis of Metal Foam Heat Sink with Thermal Equilibrium and Non-Equilibrium Models

    Yongtong Li1, Liang Gong1, *, Hui Lu1, Dexin Zhang1, Bin Ding1

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 895-912, 2020, DOI:10.32604/cmes.2020.09009 - 01 May 2020

    Abstract In the present study, the thermal performance of metal foam heat sink was numerically investigated by adopting the local thermal non-equilibrium (LTNE) model and local thermal equilibrium (LTE) model. Temperature field distributions and temperature difference field distributions of solid and fluid phases were presented. Detailed thermal performance comparisons based on the LTE and LTNE models were evaluated by considering the effects of the relevant metal foam morphological and channel geometrical parameters. Results indicate that a distinct temperature difference exists between the solid and fluid phases when the LTNE effect is pronounced. The average Nusselt numbers… More >

  • Open Access

    ARTICLE

    Numerical Study of the Distribution of Temperatures and Relative Humidity in a Ventilated Room Located in Warm Weather

    J. Serrano-Arellano1, J. M. Belman-Flores2,*, I. Hernández-Pérez3, K. M. Aguilar-Castro3, E. V. Macías-Melo3, F. Elizalde-Blancas2, J. M. Riesco-Ávila2, F. J. García-Rodríguez4

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 571-602, 2020, DOI:10.32604/cmes.2020.08677 - 01 May 2020

    Abstract In the present study, an analysis of the heat and mass transfer in a ventilated cavity in a warm climate zone was carried out to analyze, among others, the temperatures and percentage of relative humidity (RH). The governing equations of the mathematical model were solved through the finite volume method. We used the k-ε turbulence mode to find the results of the variables of interest in seven climate records on a given day. The velocity of the inlet flow of the air-H2O mixture was varied through the Reynolds number (Re) from 500 to 10000. The outdoor weather… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Fluid and Heat Transfer in a Biological Tissue Using an Immersed Boundary Method Mimicking the Exact Structure of the Microvascular Network

    Yuanliang Tang1, 2, Lizhong Mu1, Ying He1, *

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 281-296, 2020, DOI:10.32604/fdmp.2020.06760 - 21 April 2020

    Abstract The aim of this study is to develop a model of fluid and heat transfer in a biological tissue taking into account the exact structure of the related microvascular network, and to analyze the influence of structural changes of such a network induced by diabetes. A cubic region representing local skin tissue is selected as the computational domain, which in turn includes two intravascular and extravascular sub-domains. To save computational resources, the capillary network is reduced to a 1D pipeline model and embedded into the extravascular region. On the basis of the immersed boundary method… More >

Displaying 241-250 on page 25 of 477. Per Page