Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    REVIEW

    A REVIEW ON COOLING OF DISCRETE HEATED MODULES USING LIQUID JET IMPINGEMENT

    Naveen G. Patil, Tapano Kumar Hotta*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-13, 2018, DOI:10.5098/hmt.11.16

    Abstract The manuscript deals with the critical review for cooling of discrete heated electronic components using liquid jet impingement. Cooling of electronic components has been a lead area of research in recent years. Due to the rapid growth of electronic industries, there is an enormous rise in the system power consumption, and the reduction in the size of electronic components has led to a rapid increase in the heat dissipation rate per unit volume of components. The present paper deals with the role of liquid jet impingement (heat flux removal rate 200 - 600 W/cm2) for cooling of electronic components. The… More >

  • Open Access

    ARTICLE

    ON THE MECHANISM OF BUBBLE INDUCED FORCED CONVECTIVE HEAT TRANSFER ENHANCEMENT

    Clement Roya,* , Prasanna Venuvanalingamb , James F. Klausnera , Renwei Meic

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-12, 2018, DOI:10.5098/hmt.11.1

    Abstract This article presents both an experimental and numerical study of both stationary and sliding bubbles in a horizontal duct with forced convection heat transfer. An experimental facility was fabricated using a fully transparent, electrically-heated test section in which the bubble dynamics and the thermal field on the heated wall can be acquired using high-speed cameras and Thermochromic Liquid Crystals (TLC). Experiments were conducted using the working fluid HFE 7000 for two different turbulent Reynolds numbers. The experimental temperature field in the span-wise direction is first compared to the numerically calculated temperature field of a bubble sliding near a wall and… More >

  • Open Access

    ARTICLE

    TURBINE BLADE LEADING EDGE IMPINGEMENT COOLING FROM NORMAL OR TANGENTIAL JETS WITH CROSSFLOW EFFECT

    Nian Wang, Mingjie Zhang, Sulaiman Alsaleem, Lesley M. Wright, Je-Chin Han*

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-13, 2019, DOI:10.5098/hmt.13.9

    Abstract This study investigates turbine blade, leading edge cooling from normal or tangential impinging jets. These jets impinging on a semi-cylindrical, inner surface are constrained to discharge in a single direction. The downstream jets are affected by the crossflow originating from the upstream jets. To understand the thermal flow physics, numerical simulations are performed using the realizable k- turbulence model. Both the experimental and numerical results show crossflow is more detrimental to normal impinging jets than the tangential jets. Furthermore, with a significant temperature drop across the jet plate, designers must correctly interpret jet impingement results. More >

  • Open Access

    ARTICLE

    THERMAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT OF RIB HEAT SINK FOR CPU

    Ming Zhao* , Yang Tian

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-10, 2019, DOI:10.5098/hmt.13.4

    Abstract The field synergy principle and thermal resistance analysis were carried out for the heat transfer enhancement of a chip heat sink. Thermal analysis of the heat dissipation capacity is applied for setting up the gallery on the rib, changing the fan ventilation diameter, and changing the rib height. The results show that the analysis of field synergy principle agrees well with that of the thermal analysis, and setting up a gallery on the rib can improve the heat capacity of the heat sink. Meanwhile, the results also show that decreasing diameter of the ventilation causes heat capacity dropping because the… More >

  • Open Access

    ARTICLE

    COMPARISON OF CFD AND EMPIRICAL MODELS FOR PREDICTING WALL TEMPERATURE AT SUPERCRITICAL CONDITIONS OF WATER

    S. Ananda, S. Suresha, R. Dhanuskodib, D. Santhosh Kumarb,*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-9, 2020, DOI:10.5098/hmt.14.8

    Abstract The present work investigates the wall temperature prediction at supercritical pressure of water by CFD and compares the prediction of CFD and that of 11 empirical correlations available in literature. Supercritical-water heat transfer experimental data, covering a mass flux range of 400-1500 kg/m2s, heat flux range of 150-1000 kW/m2, at pressure 241 bar and diameter 10 mm tube, were obtained from literature. CFD simulations have been carried out for those operating conditions and compared with experimental data. Around 362 experimental wall temperature data of both heat transfer enhancement and heat transfer deterioration region have been taken for comparison. A visual… More >

  • Open Access

    ARTICLE

    CFD-BASED STUDY ON HEAT TRANSFER ENHANCEMENT BEHIND A PROJECTION IN A MINIATURIZED FLOW CHANNEL BY PULSATING FLOW

    Wakana Hiratsukaa , Takashi Fukueb,*, Hidemi Shirakawac, Katsuyuki Nakayamad, Yasushi Koitoe

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-8, 2020, DOI:10.5098/hmt.15.16

    Abstract This paper describes a possibility of heat transfer enhancement in a mm-scale flow channel by using a combination of some projections and pulsating flow. The objective of this research is to develop a novel heat exchanger for miniaturized productions such as high-density packaging electronic equipment by applying pulsating flow to enhance heat transfer while inhibiting an increase of pressure drop. In order to evaluate the possibility of applying pulsating flow to miniature water channels, a three-dimensional flow and heat transfer analysis was performed. Heat transfer performance of a combination of pulsating water flow and a projection was investigated. The mechanism… More >

  • Open Access

    ARTICLE

    NUMERICAL THERMAL STUDY OF HEAT TRANSFER ENHANCEMENT IN LAMINAR-TURBULENT TRANSITION FLOW THROUGH ABSORBER PIPE OF PARABOLIC SOLAR TROUGH COLLECTOR SYSTEM

    Marwa M. Ibrahima,*, Mohamed Mahran Kasemb,c

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-11, 2021, DOI:10.5098/hmt.17.20

    Abstract Currently electricity generation technologies by thermal energy conversions become strong demand. The objective of this paper is to present a novel thermal study of absorber/receiver circular pipe of parabolic trough solar collector system for laminar and turbulent (k-ɛ model) fluids flow as well as two-dimensional numerical simulation is performed using CFD ANSYS FLUENT software. Significant improvements in heat transfer and velocity were discovered; the pattern of temperature distribution over the pipe absorber was displayed, and velocity vectors, pressure contours, and temperature contours were studied. The impact of increasing the heat flux towards the pipe wall is discussed. Heat transfer coefficient… More >

  • Open Access

    ARTICLE

    RECENT ADVANCES OF SURFACE WETTABILITY EFFECT ON FLOW BOILING HEAT TRANSFER PERFORMANCE

    Shuang Caoa,*, Hui Yanga, Luxing Zhaoa, Tao Wanga, Jian Xieb,†

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-16, 2021, DOI:10.5098/hmt.17.17

    Abstract Flow boiling heat transfer is an effective way to fulfill the energy transfer. The wettability of boiling surface influences the liquid spreading ability and the growth, departure, and release frequency of bubbles, which determines the heat transfer performance. According to the wettability and combination forms, boiling surface are classified into weak wetting surface, strong wetting surface, and heterogeneous wetting surface. Fabricating by physical, chemical method or coating the original surface with a layer of low surface energy, the weak wetting surface has more effective activation point and nucleation center density to improve heat transfer performance at low heat flux. The… More >

  • Open Access

    ARTICLE

    EFFECT OF RIB HEIGHT ON HEAT TRANSFER ENHANCEMENT BY COMBINATION OF A RIB AND PULSATING FLOW

    Shintaro Hayakawaa , Takashi Fukuea,*,† , Yasuhiro Sugimotoa , Wakana Hiratsukab , Hidemi Shirakawac , Yasushi Koitod

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-9, 2022, DOI:10.5098/hmt.18.29

    Abstract This paper describes the effects of a combination of rib and pulsating flow on heat transfer enhancement in an mm-scale model that simulates the narrow flow passages in cooling devices of downsized electronic equipment. This research aims to develop a novel water cooling device that increases heat transfer performance while inhibiting pumping power. Our recent study has reported that a combination of pulsating flow and rib could enhance heat transfer performance relative to the simple duct. In the present study, to verify the optimal rib height for improving heat transfer by pulsating flow, we evaluated the relationship between heat transfer… More >

  • Open Access

    ARTICLE

    FLUID INFLOW AND HEAT TRANSFER ENHANCEMENT: AN EXPERIMENTAL ANALYSIS OF NANOFLUIDS IN MINCHANNEL

    Ameer Abed Jaddoa* , Karema Assi Hamad, Arshad Abdul Jaleil Hameed

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-9, 2023, DOI:10.5098/hmt.20.18

    Abstract In the Heat Transfer process, many innovations were introduced aiming to obtain the most optimum behavior of the cooling process using nanofluids as coolant liquids. These nanofluids have gained much attention in cooling systems due to their special rheological and thermal performance. In this work, an experimental evaluation is conducted for nanofluids Al2O3, SiO2, CuO, ZnO, and TiO2 nanoparticles applied to a mini-channel. The nanofluid particles were entirely spread out in purified water (size of 15 nm) before being passed to the heat sink through a confined inflow channel. The obtained results showed that the achieved improvement rates are 25%,20%,… More >

Displaying 1-10 on page 1 of 21. Per Page