Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (177)
  • Open Access

    ARTICLE

    FedDPL: Federated Dynamic Prototype Learning for Privacy-Preserving Malware Analysis across Heterogeneous Clients

    Danping Niu1, Yuan Ping1,*, Chun Guo2, Xiaojun Wang3, Bin Hao4

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073630 - 12 January 2026

    Abstract With the increasing complexity of malware attack techniques, traditional detection methods face significant challenges, such as privacy preservation, data heterogeneity, and lacking category information. To address these issues, we propose Federated Dynamic Prototype Learning (FedDPL) for malware classification by integrating Federated Learning with a specifically designed K-means. Under the Federated Learning framework, model training occurs locally without data sharing, effectively protecting user data privacy and preventing the leakage of sensitive information. Furthermore, to tackle the challenges of data heterogeneity and the lack of category information, FedDPL introduces a dynamic prototype learning mechanism, which adaptively adjusts the More >

  • Open Access

    ARTICLE

    CamSimXR: eXtended Reality (XR) Based Pre-Visualization and Simulation for Optimal Placement of Heterogeneous Cameras

    Juhwan Kim1, Gwanghyun Jo2, Dongsik Jo1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072664 - 12 January 2026

    Abstract In recent years, three-dimensional reconstruction technologies that employ multiple cameras have continued to evolve significantly, enabling remote collaboration among users in extended Reality (XR) environments. In addition, methods for deploying multiple cameras for motion capture of users (e.g., performers) are widely used in computer graphics. As the need to minimize and optimize the number of cameras grows to reduce costs, various technologies and research approaches focused on Optimal Camera Placement (OCP) are continually being proposed. However, as most existing studies assume homogeneous camera setups, there is a growing demand for studies on heterogeneous camera setups.… More >

  • Open Access

    ARTICLE

    Blockchain and Smart Contracts with Barzilai-Borwein Intelligence for Industrial Cyber-Physical System

    Gowrishankar Jayaraman1, Ashok Kumar Munnangi2, Ramesh Sekaran3, Arunkumar Gopu3, Manikandan Ramachandran4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071124 - 12 January 2026

    Abstract Industrial Cyber-Physical Systems (ICPSs) play a vital role in modern industries by providing an intellectual foundation for automated operations. With the increasing integration of information-driven processes, ensuring the security of Industrial Control Production Systems (ICPSs) has become a critical challenge. These systems are highly vulnerable to attacks such as denial-of-service (DoS), eclipse, and Sybil attacks, which can significantly disrupt industrial operations. This work proposes an effective protection strategy using an Artificial Intelligence (AI)-enabled Smart Contract (SC) framework combined with the Heterogeneous Barzilai–Borwein Support Vector (HBBSV) method for industrial-based CPS environments. The approach reduces run time… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Damage Behavior in Graphene-Reinforced Aluminum Matrix Composite Armatures under Multi-Physical Field Coupling

    Junwen Huo, Haicheng Liang, Weiye Dong, Xiaoming Du*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.073285 - 09 December 2025

    Abstract With the rapid advancement of electromagnetic launch technology, enhancing the structural stability and thermal resistance of armatures has become essential for improving the overall efficiency and reliability of railgun systems. Traditional aluminum alloy armatures often suffer from severe ablation, deformation, and uneven current distribution under high pulsed currents, which limit their performance and service life. To address these challenges, this study employs the Johnson–Cook constitutive model and the finite element method to develop armature models of aluminum matrix composites with varying heterogeneous graphene volume fractions. The temperature, stress, and strain of the armatures during operation… More >

  • Open Access

    ARTICLE

    Model Construction for Complex and Heterogeneous Data of Urban Road Traffic Congestion

    Jianchun Wen1, Minghao Zhu1,*, Bo Gao2, Zhaojian Liu1, Xuehan Li3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.069671 - 09 December 2025

    Abstract Urban traffic generates massive and diverse data, yet most systems remain fragmented. Current approaches to congestion management suffer from weak data consistency and poor scalability. This study addresses this gap by proposing the Urban Traffic Congestion Unified Metadata Model (UTC-UMM). The goal is to provide a standardized and extensible framework for describing, extracting, and storing multisource traffic data in smart cities. The model defines a two-tier specification that organizes nine core traffic resource classes. It employs an eXtensible Markup Language (XML) Schema that connects general elements with resource-specific elements. This design ensures both syntactic and… More >

  • Open Access

    ARTICLE

    HDFPM: A Heterogeneous Disk Failure Prediction Method Based on Time Series Features

    Zhongrui Jing1, Hongzhang Yang1,*, Jiangpu Guo2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.067759 - 09 December 2025

    Abstract Hard disk drives (HDDs) serve as the primary storage devices in modern data centers. Once a failure occurs, it often leads to severe data loss, significantly degrading the reliability of storage systems. Numerous studies have proposed machine learning-based HDD failure prediction models. However, the Self-Monitoring, Analysis, and Reporting Technology (SMART) attributes differ across HDD manufacturers. We define hard drives of the same brand and model as homogeneous HDD groups, and those from different brands or models as heterogeneous HDD groups. In practical engineering scenarios, a data center is often composed of a heterogeneous population of… More >

  • Open Access

    ARTICLE

    Conditional Generative Adversarial Network-Based Travel Route Recommendation

    Sunbin Shin1, Luong Vuong Nguyen2, Grzegorz J. Nalepa3,4, Paulo Novais5, Xuan Hau Pham6, Jason J. Jung1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-40, 2026, DOI:10.32604/cmc.2025.070613 - 10 November 2025

    Abstract Recommending personalized travel routes from sparse, implicit feedback poses a significant challenge, as conventional systems often struggle with information overload and fail to capture the complex, sequential nature of user preferences. To address this, we propose a Conditional Generative Adversarial Network (CGAN) that generates diverse and highly relevant itineraries. Our approach begins by constructing a conditional vector that encapsulates a user’s profile. This vector uniquely fuses embeddings from a Heterogeneous Information Network (HIN) to model complex user-place-route relationships, a Recurrent Neural Network (RNN) to capture sequential path dynamics, and Neural Collaborative Filtering (NCF) to incorporate… More >

  • Open Access

    ARTICLE

    FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning

    Haotian Wu1, Jiaming Pei2, Jinhai Li3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069873 - 10 November 2025

    Abstract With the increasing complexity of vehicular networks and the proliferation of connected vehicles, Federated Learning (FL) has emerged as a critical framework for decentralized model training while preserving data privacy. However, efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging. To address these issues, we propose Federated Learning with Client Selection and Adaptive Weighting (FedCW), a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks. FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts More >

  • Open Access

    ARTICLE

    An Sn-Lignosulfonate Catalyst for the Dehydration of Xylose into Furfural in a Biphasic System

    Xueqin Liu1, Qingchong Xu1, Yao Liu1, Junli Ren1,*, Lihong Zhao1, Ruonan Zhu1, Xingjie Wang1, Wei Qi2

    Journal of Renewable Materials, Vol.13, No.11, pp. 2091-2107, 2025, DOI:10.32604/jrm.2025.02025-0060 - 24 November 2025

    Abstract It is highly attractive for the catalysts prepared from renewable materials and/or industrial by-products. Herein, lignosulfonate (LS) as the by-product in the papermaking industry was utilized to fabricate Sn-containing organic-inorganic complexing catalysts (Sn(x)@LS) by a simple hydrothermal self-assembly process. The fabricated Sn(x)@LS played an excellent performance in the dehydration of xylose into furfural in the carbon tetrachloride (CTC)-water biphasic system, yielding 78.5% furfural at 180°C for 60 min. It was revealed that strong coordination between Sn4+ and the phenolic hydroxyl groups of LS created a robust organic-inorganic skeleton (-Ar-O-Sn-O-Ar-), simultaneously generating potent Lewis acidic sites, and More > Graphic Abstract

    An Sn-Lignosulfonate Catalyst for the Dehydration of Xylose into Furfural in a Biphasic System

  • Open Access

    PROCEEDINGS

    AI-Assisted Generative Inverse Design of Heterogeneous Meta-Biomaterials Based on TPMS for Biomimetic Tissue Engineering

    Xiaolong Zhu, Feng Chen, Yuntian Chen, Wei Zhu, Xiaoxiao Han*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.012584

    Abstract Human tissues and organs exhibit not only intricate anatomical architectures but also spatially heterogeneous distributions of elastic modulus—for example, between cancellous and cortical bone, across the epidermis, dermis, and subcutaneous layers, and between healthy and fibrotic liver tissues. Conventional biomaterials often fail to replicate such mechanical heterogeneity, thereby limiting their capacity to recreate biomimetic physiological microenvironments essential for applications like tissue regeneration and disease modeling. Meta-biomaterials, artificially engineered through the rational structural design of continuous materials, have emerged as a promising class of materials owing to their highly tunable mechanical and biological properties. These attributes… More >

Displaying 1-10 on page 1 of 177. Per Page