Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (171)
  • Open Access

    ARTICLE

    Conditional Generative Adversarial Network-Based Travel Route Recommendation

    Sunbin Shin1, Luong Vuong Nguyen2, Grzegorz J. Nalepa3,4, Paulo Novais5, Xuan Hau Pham6, Jason J. Jung1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-40, 2026, DOI:10.32604/cmc.2025.070613 - 10 November 2025

    Abstract Recommending personalized travel routes from sparse, implicit feedback poses a significant challenge, as conventional systems often struggle with information overload and fail to capture the complex, sequential nature of user preferences. To address this, we propose a Conditional Generative Adversarial Network (CGAN) that generates diverse and highly relevant itineraries. Our approach begins by constructing a conditional vector that encapsulates a user’s profile. This vector uniquely fuses embeddings from a Heterogeneous Information Network (HIN) to model complex user-place-route relationships, a Recurrent Neural Network (RNN) to capture sequential path dynamics, and Neural Collaborative Filtering (NCF) to incorporate… More >

  • Open Access

    ARTICLE

    FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning

    Haotian Wu1, Jiaming Pei2, Jinhai Li3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069873 - 10 November 2025

    Abstract With the increasing complexity of vehicular networks and the proliferation of connected vehicles, Federated Learning (FL) has emerged as a critical framework for decentralized model training while preserving data privacy. However, efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging. To address these issues, we propose Federated Learning with Client Selection and Adaptive Weighting (FedCW), a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks. FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts More >

  • Open Access

    ARTICLE

    An Sn-Lignosulfonate Catalyst for the Dehydration of Xylose into Furfural in a Biphasic System

    Xueqin Liu1, Qingchong Xu1, Yao Liu1, Junli Ren1,*, Lihong Zhao1, Ruonan Zhu1, Xingjie Wang1, Wei Qi2

    Journal of Renewable Materials, Vol.13, No.11, pp. 2091-2107, 2025, DOI:10.32604/jrm.2025.02025-0060 - 24 November 2025

    Abstract It is highly attractive for the catalysts prepared from renewable materials and/or industrial by-products. Herein, lignosulfonate (LS) as the by-product in the papermaking industry was utilized to fabricate Sn-containing organic-inorganic complexing catalysts (Sn(x)@LS) by a simple hydrothermal self-assembly process. The fabricated Sn(x)@LS played an excellent performance in the dehydration of xylose into furfural in the carbon tetrachloride (CTC)-water biphasic system, yielding 78.5% furfural at 180°C for 60 min. It was revealed that strong coordination between Sn4+ and the phenolic hydroxyl groups of LS created a robust organic-inorganic skeleton (-Ar-O-Sn-O-Ar-), simultaneously generating potent Lewis acidic sites, and More > Graphic Abstract

    An Sn-Lignosulfonate Catalyst for the Dehydration of Xylose into Furfural in a Biphasic System

  • Open Access

    PROCEEDINGS

    AI-Assisted Generative Inverse Design of Heterogeneous Meta-Biomaterials Based on TPMS for Biomimetic Tissue Engineering

    Xiaolong Zhu, Feng Chen, Yuntian Chen, Wei Zhu, Xiaoxiao Han*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.012584

    Abstract Human tissues and organs exhibit not only intricate anatomical architectures but also spatially heterogeneous distributions of elastic modulus—for example, between cancellous and cortical bone, across the epidermis, dermis, and subcutaneous layers, and between healthy and fibrotic liver tissues. Conventional biomaterials often fail to replicate such mechanical heterogeneity, thereby limiting their capacity to recreate biomimetic physiological microenvironments essential for applications like tissue regeneration and disease modeling. Meta-biomaterials, artificially engineered through the rational structural design of continuous materials, have emerged as a promising class of materials owing to their highly tunable mechanical and biological properties. These attributes… More >

  • Open Access

    ARTICLE

    VHO Algorithm for Heterogeneous Networks of UAV-Hangar Cluster Based on GA Optimization and Edge Computing

    Siliang Chen1, Dongri Shan2,*, Yansheng Niu3

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5263-5286, 2025, DOI:10.32604/cmc.2025.067892 - 23 October 2025

    Abstract With the increasing deployment of Unmanned Aerial Vehicle-Hangar (UAV-H) clusters in dynamic environments such as disaster response and precision agriculture, existing networking schemes often struggle with adaptability to complex scenarios, while traditional Vertical Handoff (VHO) algorithms fail to fully address the unique challenges of UAV-H systems, including high-speed mobility and limited computational resources. To bridge this gap, this paper proposes a heterogeneous network architecture integrating 5th Generation Mobile Communication Technology (5G) cellular networks and self-organizing mesh networks for UAV-H clusters, accompanied by a novel VHO algorithm. The proposed algorithm leverages Multi-Attribute Decision-Making (MADM) theory combined… More >

  • Open Access

    ARTICLE

    Probabilistic Rock Slope Stability Assessment of Heterogeneous Pyroclastic Slopes Considering Collapse Using Monte Carlo Methodology

    Miguel A. Millán1,*, Rubén A. Galindo2, Fausto Molina-Gómez1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2923-2941, 2025, DOI:10.32604/cmes.2025.069356 - 30 September 2025

    Abstract Volcanic terrains exhibit a complex structure of pyroclastic deposits interspersed with sedimentary processes, resulting in irregular lithological sequences that lack lateral continuity and distinct stratigraphic patterns. This complexity poses significant challenges for slope stability analysis, requiring the development of specialized techniques to address these issues. This research presents a numerical methodology that incorporates spatial variability, nonlinear material characterization, and probabilistic analysis using a Monte Carlo framework to address this issue. The heterogeneous structure is represented by randomly assigning different lithotypes across the slope, while maintaining predefined global proportions. This contrasts with the more common approach… More >

  • Open Access

    ARTICLE

    Mobility-Aware Edge Caching with Transformer-DQN in D2D-Enabled Heterogeneous Networks

    Yiming Guo, Hongyu Ma*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3485-3505, 2025, DOI:10.32604/cmc.2025.067590 - 23 September 2025

    Abstract In dynamic 5G network environments, user mobility and heterogeneous network topologies pose dual challenges to the effort of improving performance of mobile edge caching. Existing studies often overlook the dynamic nature of user locations and the potential of device-to-device (D2D) cooperative caching, limiting the reduction of transmission latency. To address this issue, this paper proposes a joint optimization scheme for edge caching that integrates user mobility prediction with deep reinforcement learning. First, a Transformer-based geolocation prediction model is designed, leveraging multi-head attention mechanisms to capture correlations in historical user trajectories for accurate future location prediction.… More >

  • Open Access

    ARTICLE

    Second-Life Battery Energy Storage System Capacity Planning and Power Dispatch via Model-Free Adaptive Control-Embedded Heuristic Optimization

    Chuan Yuan1, Chang Liu2,3, Shijun Chen1, Weiting Xu2,3, Jing Gou1, Ke Xu2,3, Zhengbo Li4,*, Youbo Liu4

    Energy Engineering, Vol.122, No.9, pp. 3573-3593, 2025, DOI:10.32604/ee.2025.067785 - 26 August 2025

    Abstract The increasing penetration of second-life battery energy storage systems (SLBESS) in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries. This paper presents a novel model-free adaptive voltage control-embedded dung beetle-inspired heuristic optimization algorithm for optimal SLBESS capacity configuration and power dispatch. To simultaneously address the computational complexity and ensure system stability, this paper develops a comprehensive bilevel optimization framework. At the upper level, a dung beetle optimization algorithm determines the optimal SLBESS capacity configuration by minimizing total lifecycle costs while incorporating… More >

  • Open Access

    ARTICLE

    CYMP-AS1 Promotes Ovarian Cancer Progression by Enhancing the Intracellular Translocation of hnRNPM and Reducing the Stability of AXIN2 mRNA

    Yuhan Wang, Yimei Meng, Wanqiu Xia, Yusen Liang, Yaru Wang, Peiling Li*, Lei Fang*

    Oncology Research, Vol.33, No.8, pp. 2141-2159, 2025, DOI:10.32604/or.2025.064367 - 18 July 2025

    Abstract Background: Ovarian cancer (OC) is a representative malignancy of the female reproductive system, with a poor prognosis. Long non-coding RNAs (lncRNAs) crucially affect tumor development. This study aimed to identify lncRNAs that potentially participated in OC. Methods: LncRNA expression in cells and tissues was quantified using reverse transcription-quantitative PCR, while fluorescence in situ hybridization determined their cellular localization. Various in vitro assays, together with a mouse xenograft model, were employed to elucidate the function of CYMP antisense RNA 1 (CYMP-AS1) in OC. The molecular mechanisms underlying CYMP-AS1 regulation were investigated through RNA pull-down and immunoprecipitation assays, immunofluorescence… More > Graphic Abstract

    CYMP-AS1 Promotes Ovarian Cancer Progression by Enhancing the Intracellular Translocation of hnRNPM and Reducing the Stability of AXIN2 mRNA

  • Open Access

    ARTICLE

    Intelligent Management of Resources for Smart Edge Computing in 5G Heterogeneous Networks Using Blockchain and Deep Learning

    Mohammad Tabrez Quasim1,*, Khair Ul Nisa1, Mohammad Shahid Husain2, Abakar Ibraheem Abdalla Aadam1, Mohammed Waseequ Sheraz1, Mohammad Zunnun Khan1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1169-1187, 2025, DOI:10.32604/cmc.2025.062989 - 09 June 2025

    Abstract Smart edge computing (SEC) is a novel paradigm for computing that could transfer cloud-based applications to the edge network, supporting computation-intensive services like face detection and natural language processing. A core feature of mobile edge computing, SEC improves user experience and device performance by offloading local activities to edge processors. In this framework, blockchain technology is utilized to ensure secure and trustworthy communication between edge devices and servers, protecting against potential security threats. Additionally, Deep Learning algorithms are employed to analyze resource availability and optimize computation offloading decisions dynamically. IoT applications that require significant resources… More >

Displaying 1-10 on page 1 of 171. Per Page