Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Elasto-Plastic MLPG Method for Micromechanical Modeling of Heterogeneous Materials

    Isa Ahmadi1, M.M. Aghdam2

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.1, pp. 21-48, 2015, DOI:10.3970/cmes.2015.108.021

    Abstract In this study, a truly meshless method based on the meshless local Petrov-Galerkin method is formulated for analysis of the elastic-plastic behavior of heterogeneous solid materials. The incremental theory of plasticity is employed for modeling the nonlinearity of the material behavior due to plastic strains. The well-known Prandtl-Reuss flow rule of plasticity is used as the constitutive equation of the material. In the presented method, the computational cost is reduced due to elimination of the domain integration from the formulation. As a practical example, the presented elastic-plastic meshless formulation is employed for micromechanical analysis of the unidirectional composite material. A… More >

  • Open Access

    ARTICLE

    Comparison of Four Multiscale Methods for Elliptic Problems

    Y. T. Wu1, Y. F. Nie2, Z. H. Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.4, pp. 297-325, 2014, DOI:10.3970/cmes.2014.099.297

    Abstract Four representative multiscale methods, namely asymptotic homogenization method (AHM), heterogeneous multiscale method (HMM), variational multiscale (VMS) method and multiscale finite element method (MsFEM), for elliptic problems with multiscale coefficients are surveyed. According to the features they possess, these methods are divided into two categories. AHM and HMM belong to the up–down framework. The feature of the framework is that the macroscopic solution is solved first with the help of effective information computed in local domains, and then the multiscale solution is resolved in local domains using the macroscopic solution when necessary. VMS method andMsFEM fall in the uncoupling framework. The… More >

  • Open Access

    ARTICLE

    Numerical Design of Random Micro-Heterogeneous Materials with Functionally-Graded Effective Thermal Conductivities Using Genetic Algorithms and the Fast Boundary Element Method

    Marco Dondero1, Adrián P. Cisilino1,2, J. Pablo Tomba1

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.3&4, pp. 225-246, 2011, DOI:10.3970/cmes.2011.078.225

    Abstract This paper introduces a numerical methodology for the design of random micro-heterogeneous materials with functionally graded effective thermal conductivities (ETC). The optimization is carried out using representative volume elements (RVEs), a parallel Genetic Algorithm (GA) as optimization method, and a Fast Multipole Boundary Element Method (FMBEM) for the evaluation of the cost function. The methodology is applied for the design of foam-like microstructures consisting of random distributions of circular insulated holes. The temperature field along a material sample is used as objective function, while the spatial distribution of the holes is the design variable. There are presented details of the… More >

  • Open Access

    ARTICLE

    3-D Modeling of a composite material reinforced with multiple thickly coated particles using the infinite element method

    D.S. Liu1,2 , C.Y. Chen2 , D.Y. Chiou3

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.2, pp. 179-192, 2005, DOI:10.3970/cmes.2005.009.179

    Abstract A three-dimensional heterogeneous infinite element method (HIEM) for modeling inclusions with interphases in composite materials is presented. This special element is formulated based on the conventional finite element method (FEM) using the similarity stiffness property and matrix condensation operations. An HIE-FE coupling scheme is also developed and implemented using the commercial software ABAQUS to conduct the elastostatic analysis. The proposed approach was validated first to study heterogeneous material containing one spherical inclusion. The displacement and stress variations around the inclusion vicinity are verified against conventional FEM. The proposed approach was next applied to analyze the effective modulus of single-particle and… More >

  • Open Access

    ARTICLE

    Modeling of Effective Properties of Multiphase Magnetoelectroelastic Heterogeneous Materials

    A. Bakkali1, L. Azrar1,2, N. Fakri1

    CMC-Computers, Materials & Continua, Vol.23, No.3, pp. 201-232, 2011, DOI:10.3970/cmc.2011.023.201

    Abstract In this paper an N-phase Incremental Self Consistent model is developed for magnetoelectroelastic composites as well as the N-phase Mori-Tanaka and classical Self Consistent. Our aim here is to circumvent the limitation of the Self Consistent predictions for some coupling effective properties at certain inclusion volume fractions. The anomalies of the SC estimates are more drastic when the void inclusions are considered. The mathematical modeling is based on the heterogeneous inclusion problem of Eshelby which leads to an expression for the strain-electric-magnetic field related by integral equations. The effective N-phase magnetoelectroelastic moduli are expressed as a function of magnetoelectroelastic concentration… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Elastic Behaviour and Failure Processes in Heterogeneous Material

    Lingfei Gao1, Xiaoping Zheng1,2, Zhenhan Yao1

    CMC-Computers, Materials & Continua, Vol.3, No.1, pp. 25-36, 2006, DOI:10.3970/cmc.2007.003.025

    Abstract A general numerical approach is developed to model the elastic behaviours and failure processes of heterogeneous materials. The heterogeneous material body is assumed composed of a large number of convex polygon lattices with different phases. These phases are locally isotropic and elastic-brittle with the different lattices displaying variable material parameters and a Weibull-type statistical distribution. When the effective strain exceeds a local fracture criterion, the full lattice exhibits failure uniformly, and this is modelled by assuming a very small Young modulus value. An auto-select loading method is employed to model the failure process. The proposed hybrid approach is applied to… More >

Displaying 11-20 on page 2 of 16. Per Page