Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Dynamic Boundary Optimization via IDBO-VMD: A Novel Power Allocation Strategy for Hybrid Energy Storage with Enhanced Grid Stability

    Zujun Ding, Qi Xiang, Chengyi Li, Mengyu Ma, Chutong Zhang, Xinfa Gu, Jiaming Shi, Hui Huang, Aoyun Xia, Wenjie Wang, Wan Chen, Ziluo Yu, Jie Ji*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070442 - 27 December 2025

    Abstract In order to address environmental pollution and resource depletion caused by traditional power generation, this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved Dung Beetle Optimizer (IDBO) with Variational Mode Decomposition (VMD). The IDBO-VMD method is designed to enhance the accuracy and efficiency of wind-speed time-series decomposition and to effectively smooth photovoltaic power fluctuations. This study innovatively improves the traditional variational mode decomposition (VMD) algorithm, and significantly improves the accuracy and adaptive ability of signal decomposition by IDBO self-optimization of key parameters K and a. On this basis, Fourier transform technology… More >

  • Open Access

    ARTICLE

    A Bi-Level Capacity Configuration Model for Hybrid Energy Storage Considering SOC Self-Recovery

    Fan Chen*, Tianhui Zhang, Man Wang, Zhiheng Zhuang, Qiang Zhang, Zihan Ma

    Energy Engineering, Vol.122, No.10, pp. 4099-4120, 2025, DOI:10.32604/ee.2025.069346 - 30 September 2025

    Abstract The configuration of a hybrid energy storage system (HESS) plays a pivotal role in mitigating wind power fluctuations and enabling primary frequency regulation, thereby enhancing the active power support capability of wind power integration systems. However, most existing studies on HESS capacity configuration overlook the self-recovery control of the state of charge (SOC), creating challenges in sustaining capacity during long-term operation. This omission can impair frequency regulation performance, increase capacity requirements, and shorten battery lifespan. To address these challenges, this study proposes a bi-level planning–operation capacity configuration model that explicitly incorporates SOC self-recovery control. In… More >

  • Open Access

    ARTICLE

    Simulation Platform for the Optimal Configuration of Hybrid Energy Storage Assisting Thermal Power Units in Secondary Frequency Regulation

    Cuiping Li1, Ziyun Zong1, Xingxu Zhu1, Zheng Fang2, Caiqi Jia3, Wenbo Si4, Gangui Yan1, Junhui Li1,*

    Energy Engineering, Vol.122, No.9, pp. 3459-3485, 2025, DOI:10.32604/ee.2025.066629 - 26 August 2025

    Abstract In response to the issue of determining the appropriate capacity when hybrid energy storage systems (HESS) collaborate with thermal power units (TPU) in the system’s secondary frequency regulation, a configuration method for HESS based on the analysis of frequency regulation demand analysis is proposed. And a corresponding simulation platform is developed. Firstly, a frequency modulation demand method for reducing the frequency modulation losses of TPU is proposed. Secondly, taking into comprehensive consideration that flywheel energy storage features rapid power response and battery energy storage has the characteristic of high energy density, a coordinated control strategy… More > Graphic Abstract

    Simulation Platform for the Optimal Configuration of Hybrid Energy Storage Assisting Thermal Power Units in Secondary Frequency Regulation

  • Open Access

    ARTICLE

    Application of a Regional Data Set of the Housing Sector for Hydrogen Storage-Supported Energy System Planning

    Steffen Schedler1,*, Michael Bareev-Rudy1, Stefanie Meilinger2, Tanja Clees1,3

    Energy Engineering, Vol.122, No.5, pp. 1755-1770, 2025, DOI:10.32604/ee.2025.061962 - 25 April 2025

    Abstract Germany aims to achieve a national climate-neutral energy system by 2045. The residential sector still accounts for 29% of end energy consumption, with 74% attributed to the direct use of fossil fuels for heating and hot water. In order to reduce fossil energy use in the household sector, great efforts are being made to design new energy concepts that expand the use of renewable energies to supply electricity and heat. One possibility is to convert parts of the natural gas grid to a hydrogen-based gas grid to deliver and store energy for urban quarters of… More >

  • Open Access

    ARTICLE

    Online Optimization to Suppress the Grid-Injected Power Deviation of Wind Farms with Battery-Hydrogen Hybrid Energy Storage Systems

    Min Liu1, Qiliang Wu1, Zhixin Li2, Bo Zhao1, Leiqi Zhang1, Junhui Li2, Xingxu Zhu2,*

    Energy Engineering, Vol.122, No.4, pp. 1403-1424, 2025, DOI:10.32604/ee.2025.060256 - 31 March 2025

    Abstract To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms, an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed. First, considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage, an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system. Next, an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with… More >

  • Open Access

    ARTICLE

    Correlation Analysis of Power Quality and Power Spectrum in Wind Power Hybrid Energy Storage Systems

    Jian Gao1, Hongliang Hao2, Caifeng Wen1,*, Yongsheng Wang3, Zhanhua Han4, Edwin E. Nykilla2, Yuwen Zhang2

    Energy Engineering, Vol.122, No.3, pp. 1175-1198, 2025, DOI:10.32604/ee.2025.061083 - 07 March 2025

    Abstract Power quality is a crucial area of research in contemporary power systems, particularly given the rapid proliferation of intermittent renewable energy sources such as wind power. This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra, PSD, and random signal power spectra. The relationship was derived, validated through experiments and simulations, and subsequently applied to multi-objective optimization. Various optimization algorithms were compared to achieve optimal system power quality. The findings revealed that the relationships between power quality indices and PSD were influenced by variations in More >

  • Open Access

    ARTICLE

    CCHP-Type Micro-Grid Scheduling Optimization Based on Improved Multi-Objective Grey Wolf Optimizer

    Yu Zhang*, Sheng Wang, Fanming Zeng, Yijie Lin

    Energy Engineering, Vol.122, No.3, pp. 1137-1151, 2025, DOI:10.32604/ee.2025.060945 - 07 March 2025

    Abstract With the development of renewable energy technologies such as photovoltaics and wind power, it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement. To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy, while simultaneously enhancing user satisfaction on the demand side, this paper introduces an improved multi-objective Grey Wolf Optimizer based on Cauchy variation. The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of… More > Graphic Abstract

    CCHP-Type Micro-Grid Scheduling Optimization Based on Improved Multi-Objective Grey Wolf Optimizer

  • Open Access

    ARTICLE

    Optimal Scheduling of an Independent Electro-Hydrogen System with Hybrid Energy Storage Using a Multi-Objective Standardization Fusion Method

    Suliang Ma1, Zeqing Meng1, Mingxuan Chen2,*, Yuan Jiang3

    Energy Engineering, Vol.122, No.1, pp. 63-84, 2025, DOI:10.32604/ee.2024.057216 - 27 December 2024

    Abstract In the independent electro-hydrogen system (IEHS) with hybrid energy storage (HESS), achieving optimal scheduling is crucial. Still, it presents a challenge due to the significant deviations in values of multiple optimization objective functions caused by their physical dimensions. These deviations seriously affect the scheduling process. A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values. The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods. The proposed method More > Graphic Abstract

    Optimal Scheduling of an Independent Electro-Hydrogen System with Hybrid Energy Storage Using a Multi-Objective Standardization Fusion Method

  • Open Access

    ARTICLE

    Coordinated Control Strategy of New Energy Power Generation System with Hybrid Energy Storage Unit

    Yun Zhang1,*, Zifen Han2, Biao Tian1, Ning Chen2, Yi Fan3

    Energy Engineering, Vol.122, No.1, pp. 167-184, 2025, DOI:10.32604/ee.2024.056190 - 27 December 2024

    Abstract The new energy power generation is becoming increasingly important in the power system. Such as photovoltaic power generation has become a research hotspot, however, due to the characteristics of light radiation changes, photovoltaic power generation is unstable and random, resulting in a low utilization rate and directly affecting the stability of the power grid. To solve this problem, this paper proposes a coordinated control strategy for a new energy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit. Firstly, the variational mode decomposition algorithm is… More >

  • Open Access

    ARTICLE

    Double-Layer-Optimizing Method of Hybrid Energy Storage Microgrid Based on Improved Grey Wolf Optimization

    Xianjing Zhong1, Xianbo Sun1,*, Yuhan Wu2

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1599-1619, 2023, DOI:10.32604/cmc.2023.039912 - 30 August 2023

    Abstract To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation, a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization (IGWO) is proposed. Firstly, building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system. Secondly, the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function, and the minimum peak-to-valley of the microgrid’s daily output is taken as the… More >

Displaying 1-10 on page 1 of 13. Per Page