Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Numerical Simulation of Hydraulic Fracture Propagation in Deep Elasto-Plastic Reservoirs

    Xin Wan1, Shuyi Li2,3, Tiankui Guo2,3,*, Ming Chen2,3, Xing Yang2,3, Guchang Zhang2,3, Zi’ang Wang2,3

    Energy Engineering, Vol.122, No.8, pp. 3013-3039, 2025, DOI:10.32604/ee.2025.066033 - 24 July 2025

    Abstract Hydraulic fracturing is a key technology for the efficient development of deep oil and gas reservoirs. However, fracture propagation behavior is influenced by rock elastoplasticity and thermal stress, making it difficult for traditional linear elastic models to accurately describe its dynamic response. To address this, this study employs the Continuum-Discontinuum Element Method (CDEM), incorporating an elastoplastic constitutive model, thermo-hydro-mechanical (THM) coupling effects, and cohesive zone characteristics at the fracture tip to establish a numerical model for hydraulic fracture propagation in deep elastoplastic reservoirs. A systematic investigation was conducted into the effects of fluid viscosity, reservoir… More > Graphic Abstract

    Numerical Simulation of Hydraulic Fracture Propagation in Deep Elasto-Plastic Reservoirs

  • Open Access

    ARTICLE

    Factors Influencing Fracture Propagation in Collaborative Fracturing of Multiple Horizontal Wells

    Diguang Gong1, Junbin Chen1, Cheng Cheng2, Yuanyuan Kou2,*

    Energy Engineering, Vol.121, No.2, pp. 425-437, 2024, DOI:10.32604/ee.2023.030196 - 25 January 2024

    Abstract Horizontal well-stimulation is the key to unconventional resource exploration and development. The development mode of the well plant helps increase the stimulated reservoir volume. Nevertheless, fracture interference between wells reduces the fracturing effect. Here, a 2D hydro-mechanical coupling model describing hydraulic fracture (HF) propagation is established with the extended finite element method, and the effects of several factors on HF propagation during multiple wells fracturing are analyzed. The results show that with an increase in elastic modulus, horizontal principal stress difference and injection fluid displacement, the total fracture area and the reservoir stimulation efficiency are More >

  • Open Access

    ARTICLE

    Hydro-Mechanical Modelling of a Natural Slope Affected by a Multiple Slip Surface Failure Mechanism

    A. Ferrari1, L. Laloui1,2, Ch. Bonnard1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.3, pp. 217-236, 2009, DOI:10.3970/cmes.2009.052.217

    Abstract A coupled hydro-mechanical formulation is presented for the analysis of landslide motion during crisis episodes. The mathematical formulation is used to model a natural slope affected by a multiple slip surface failure mechanism, in which pore water pressure evolution was identified as the main cause for movement accelerations. An elasto-plastic constitutive model is adopted for the behaviour of slip surfaces. Material parameters are obtained by combining the available laboratory tests and the back analysis of some crisis episodes. After being calibrated and validated, the model is applied to improve the understanding of the physical processes More >

Displaying 1-10 on page 1 of 3. Per Page