Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (111)
  • Open Access

    ARTICLE

    An Enhanced Deep Learning Model for Automatic Face Mask Detection

    Qazi Mudassar Ilyas1, Muneer Ahmad2,*

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 241-254, 2022, DOI:10.32604/iasc.2022.018042 - 03 September 2021

    Abstract The recent COVID-19 pandemic has had lasting and severe impacts on social gatherings and interaction among people. Local administrative bodies enforce standard operating procedures (SOPs) to combat the spread of COVID-19, with mandatory precautionary measures including use of face masks at social assembly points. In addition, the World Health Organization (WHO) strongly recommends people wear a face mask as a shield against the virus. The manual inspection of a large number of people for face mask enforcement is a challenge for law enforcement agencies. This work proposes an automatic face mask detection solution using an… More >

  • Open Access

    ARTICLE

    An Optimized CNN Model Architecture for Detecting Coronavirus (COVID-19) with X-Ray Images

    Anas Basalamah1, Shadikur Rahman2,*

    Computer Systems Science and Engineering, Vol.40, No.1, pp. 375-388, 2022, DOI:10.32604/csse.2022.016949 - 26 August 2021

    Abstract This paper demonstrates empirical research on using convolutional neural networks (CNN) of deep learning techniques to classify X-rays of COVID-19 patients versus normal patients by feature extraction. Feature extraction is one of the most significant phases for classifying medical X-rays radiography that requires inclusive domain knowledge. In this study, CNN architectures such as VGG-16, VGG-19, RestNet50, RestNet18 are compared, and an optimized model for feature extraction in X-ray images from various domains involving several classes is proposed. An X-ray radiography classifier with TensorFlow GPU is created executing CNN architectures and our proposed optimized model for More >

  • Open Access

    ARTICLE

    Certain Investigations on Melanoma Detection Using Non-Subsampled Bendlet Transform with Different Classifiers

    S. Poovizhi, T. R. Ganesh Babu, R. Praveena*

    Molecular & Cellular Biomechanics, Vol.18, No.4, pp. 201-219, 2021, DOI:10.32604/mcb.2021.017984 - 27 October 2021

    Abstract Skin is the largest organ and outer enclosure of the integumentary system that protects the human body from pathogens. Among various cancers in the world, skin cancer is one of the most commonly diagnosed cancer which can be either melanoma or non-melanoma. Melanoma cancers are very fatal compared with non-melanoma cancers but the chances of survival rate are high when diagnosed and treated earlier. The main aim of this work is to analyze and investigate the performance of Non-Subsampled Bendlet Transform (NSBT) on various classifiers for detecting melanoma from dermoscopic images. NSBT is a multiscale More >

  • Open Access

    ARTICLE

    Convolutional Neural Network for Histopathological Osteosarcoma Image Classification

    Imran Ahmed1,*, Humaira Sardar1, Hanan Aljuaid2, Fakhri Alam Khan1, Muhammad Nawaz1, Adnan Awais1

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3365-3381, 2021, DOI:10.32604/cmc.2021.018486 - 24 August 2021

    Abstract Osteosarcoma is one of the most widespread causes of bone cancer globally and has a high mortality rate. Early diagnosis may increase the chances of treatment and survival however the process is time-consuming (reliability and complexity involved to extract the hand-crafted features) and largely depends on pathologists’ experience. Convolutional Neural Network (CNN—an end-to-end model) is known to be an alternative to overcome the aforesaid problems. Therefore, this work proposes a compact CNN architecture that has been rigorously explored on a Small Osteosarcoma histology Image Dataaseet (a high-class imbalanced dataset). Though, during training, class-imbalanced data can… More >

  • Open Access

    ARTICLE

    Predicting the Breed of Dogs and Cats with Fine-Tuned Keras Applications

    I.-Hung Wang1, Mahardi2, Kuang-Chyi Lee2,*, Shinn-Liang Chang1

    Intelligent Automation & Soft Computing, Vol.30, No.3, pp. 995-1005, 2021, DOI:10.32604/iasc.2021.019020 - 20 August 2021

    Abstract The images classification is one of the most common applications of deep learning. Images of dogs and cats are mostly used as examples for image classification models, as they are relatively easy for the human eyes to recognize. However, classifying the breed of a dog or a cat has its own complexity. In this paper, a fine-tuned pre-trained model of a Keras’ application was built with a new dataset of dogs and cats to predict the breed of identified dogs or cats. Keras applications are deep learning models, which have been previously trained with general More >

  • Open Access

    ARTICLE

    A Multi-Task Network for Cardiac Magnetic Resonance Image Segmentation and Classification

    Jing Peng1,2,4, Chaoyang Xia2, Yuanwei Xu3, Xiaojie Li2, Xi Wu2, Xiao Han1,4, Xinlai Chen5, Yucheng Chen3, Zhe Cui1,4,*

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 259-272, 2021, DOI:10.32604/iasc.2021.016749 - 26 July 2021

    Abstract Cardiomyopathy is a group of diseases that affect the heart and can cause serious health problems. Segmentation and classification are important for automating the clinical diagnosis and treatment planning for cardiomyopathy. However, this automation is difficult because of the poor quality of cardiac magnetic resonance (CMR) imaging data and varying dimensions caused by movement of the ventricle. To address these problems, a deep multi-task framework based on a convolutional neural network (CNN) is proposed to segment the left ventricle (LV) myocardium and classify cardiopathy simultaneously. The proposed model consists of a longitudinal encoder–decoder structure that… More >

  • Open Access

    ARTICLE

    The Research of Automatic Classification of Ultrasound Thyroid Nodules

    Yanling An1, Shaohai Hu1,*, Shuaiqi Liu2,3, Jie Zhao2,3,*, Yu-Dong Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 203-222, 2021, DOI:10.32604/cmes.2021.015159 - 28 June 2021

    Abstract This paper proposes a computer-aided diagnosis system which can automatically detect thyroid nodules (TNs) and discriminate them as benign or malignant. The system firstly uses variational level set active contour with gradients and phase information to complete automatic extraction of the boundaries of thyroid nodules images. Then according to thyroid ultrasound images and clinical diagnostic criteria, a new feature extraction method based on the fusion of shape, gray and texture is explored. Due to the imbalance of thyroid sample classes, this paper introduces a weight factor to improve support vector machine, offering different classes of More >

  • Open Access

    ARTICLE

    COVID-19 Automatic Detection Using Deep Learning

    Yousef Sanajalwe1,2,*, Mohammed Anbar1, Salam Al-E’mari1

    Computer Systems Science and Engineering, Vol.39, No.1, pp. 15-35, 2021, DOI:10.32604/csse.2021.017191 - 10 June 2021

    Abstract The novel coronavirus disease 2019 (COVID-19) is a pandemic disease that is currently affecting over 200 countries around the world and impacting billions of people. The first step to mitigate and control its spread is to identify and isolate the infected people. But, because of the lack of reverse transcription polymerase chain reaction (RT-CPR) tests, it is important to discover suspected COVID-19 cases as early as possible, such as by scan analysis and chest X-ray by radiologists. However, chest X-ray analysis is relatively time-consuming since it requires more than 15 minutes per case. In this… More >

  • Open Access

    ARTICLE

    A Real-Time Integrated Face Mask Detector to Curtail Spread of Coronavirus

    Shilpa Sethi1, Mamta Kathuria1,*, Trilok Kaushik2

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 389-409, 2021, DOI:10.32604/cmes.2021.014478 - 19 April 2021

    Abstract Effective strategies to control COVID-19 pandemic need high attention to mitigate negatively impacted communal health and global economy, with the brim-full horizon yet to unfold. In the absence of effective antiviral and limited medical resources, many measures are recommended by WHO to control the infection rate and avoid exhausting the limited medical resources. Wearing mask is among the non-pharmaceutical intervention measures that can be used as barrier to primary route of SARS-CoV2 droplets expelled by presymptomatic or asymptomatic individuals. Regardless of discourse on medical resources and diversities in masks, all countries are mandating coverings over… More >

  • Open Access

    ARTICLE

    Classification of Domestic Refuse in Medical Institutions Based on Transfer Learning and Convolutional Neural Network

    Dequan Guo1, Qiao Yang2, Yu-Dong Zhang3, Tao Jiang1, Hanbing Yan1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 599-620, 2021, DOI:10.32604/cmes.2021.014119 - 19 April 2021

    Abstract The problem of domestic refuse is becoming more and more serious with the use of all kinds of equipment in medical institutions. This matter arouses people’s attention. Traditional artificial waste classification is subjective and cannot be put accurately; moreover, the working environment of sorting is poor and the efficiency is low. Therefore, automated and effective sorting is needed. In view of the current development of deep learning, it can provide a good auxiliary role for classification and realize automatic classification. In this paper, the ResNet-50 convolutional neural network based on the transfer learning method is More >

Displaying 91-100 on page 10 of 111. Per Page