Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (98)
  • Open Access

    ARTICLE

    Convolutional Neural Network for Histopathological Osteosarcoma Image Classification

    Imran Ahmed1,*, Humaira Sardar1, Hanan Aljuaid2, Fakhri Alam Khan1, Muhammad Nawaz1, Adnan Awais1

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3365-3381, 2021, DOI:10.32604/cmc.2021.018486

    Abstract Osteosarcoma is one of the most widespread causes of bone cancer globally and has a high mortality rate. Early diagnosis may increase the chances of treatment and survival however the process is time-consuming (reliability and complexity involved to extract the hand-crafted features) and largely depends on pathologists’ experience. Convolutional Neural Network (CNN—an end-to-end model) is known to be an alternative to overcome the aforesaid problems. Therefore, this work proposes a compact CNN architecture that has been rigorously explored on a Small Osteosarcoma histology Image Dataaseet (a high-class imbalanced dataset). Though, during training, class-imbalanced data can negatively affect the performance of… More >

  • Open Access

    ARTICLE

    Predicting the Breed of Dogs and Cats with Fine-Tuned Keras Applications

    I.-Hung Wang1, Mahardi2, Kuang-Chyi Lee2,*, Shinn-Liang Chang1

    Intelligent Automation & Soft Computing, Vol.30, No.3, pp. 995-1005, 2021, DOI:10.32604/iasc.2021.019020

    Abstract The images classification is one of the most common applications of deep learning. Images of dogs and cats are mostly used as examples for image classification models, as they are relatively easy for the human eyes to recognize. However, classifying the breed of a dog or a cat has its own complexity. In this paper, a fine-tuned pre-trained model of a Keras’ application was built with a new dataset of dogs and cats to predict the breed of identified dogs or cats. Keras applications are deep learning models, which have been previously trained with general image datasets from ImageNet. In… More >

  • Open Access

    ARTICLE

    A Multi-Task Network for Cardiac Magnetic Resonance Image Segmentation and Classification

    Jing Peng1,2,4, Chaoyang Xia2, Yuanwei Xu3, Xiaojie Li2, Xi Wu2, Xiao Han1,4, Xinlai Chen5, Yucheng Chen3, Zhe Cui1,4,*

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 259-272, 2021, DOI:10.32604/iasc.2021.016749

    Abstract Cardiomyopathy is a group of diseases that affect the heart and can cause serious health problems. Segmentation and classification are important for automating the clinical diagnosis and treatment planning for cardiomyopathy. However, this automation is difficult because of the poor quality of cardiac magnetic resonance (CMR) imaging data and varying dimensions caused by movement of the ventricle. To address these problems, a deep multi-task framework based on a convolutional neural network (CNN) is proposed to segment the left ventricle (LV) myocardium and classify cardiopathy simultaneously. The proposed model consists of a longitudinal encoder–decoder structure that obtains high- and low-level features… More >

  • Open Access

    ARTICLE

    The Research of Automatic Classification of Ultrasound Thyroid Nodules

    Yanling An1, Shaohai Hu1,*, Shuaiqi Liu2,3, Jie Zhao2,3,*, Yu-Dong Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 203-222, 2021, DOI:10.32604/cmes.2021.015159

    Abstract This paper proposes a computer-aided diagnosis system which can automatically detect thyroid nodules (TNs) and discriminate them as benign or malignant. The system firstly uses variational level set active contour with gradients and phase information to complete automatic extraction of the boundaries of thyroid nodules images. Then according to thyroid ultrasound images and clinical diagnostic criteria, a new feature extraction method based on the fusion of shape, gray and texture is explored. Due to the imbalance of thyroid sample classes, this paper introduces a weight factor to improve support vector machine, offering different classes of samples with different weights. Finally,… More >

  • Open Access

    ARTICLE

    COVID-19 Automatic Detection Using Deep Learning

    Yousef Sanajalwe1,2,*, Mohammed Anbar1, Salam Al-E’mari1

    Computer Systems Science and Engineering, Vol.39, No.1, pp. 15-35, 2021, DOI:10.32604/csse.2021.017191

    Abstract The novel coronavirus disease 2019 (COVID-19) is a pandemic disease that is currently affecting over 200 countries around the world and impacting billions of people. The first step to mitigate and control its spread is to identify and isolate the infected people. But, because of the lack of reverse transcription polymerase chain reaction (RT-CPR) tests, it is important to discover suspected COVID-19 cases as early as possible, such as by scan analysis and chest X-ray by radiologists. However, chest X-ray analysis is relatively time-consuming since it requires more than 15 minutes per case. In this paper, an automated novel detection… More >

  • Open Access

    ARTICLE

    A Real-Time Integrated Face Mask Detector to Curtail Spread of Coronavirus

    Shilpa Sethi1, Mamta Kathuria1,*, Trilok Kaushik2

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 389-409, 2021, DOI:10.32604/cmes.2021.014478

    Abstract Effective strategies to control COVID-19 pandemic need high attention to mitigate negatively impacted communal health and global economy, with the brim-full horizon yet to unfold. In the absence of effective antiviral and limited medical resources, many measures are recommended by WHO to control the infection rate and avoid exhausting the limited medical resources. Wearing mask is among the non-pharmaceutical intervention measures that can be used as barrier to primary route of SARS-CoV2 droplets expelled by presymptomatic or asymptomatic individuals. Regardless of discourse on medical resources and diversities in masks, all countries are mandating coverings over nose and mouth in public… More >

  • Open Access

    ARTICLE

    Classification of Domestic Refuse in Medical Institutions Based on Transfer Learning and Convolutional Neural Network

    Dequan Guo1, Qiao Yang2, Yu-Dong Zhang3, Tao Jiang1, Hanbing Yan1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 599-620, 2021, DOI:10.32604/cmes.2021.014119

    Abstract The problem of domestic refuse is becoming more and more serious with the use of all kinds of equipment in medical institutions. This matter arouses people’s attention. Traditional artificial waste classification is subjective and cannot be put accurately; moreover, the working environment of sorting is poor and the efficiency is low. Therefore, automated and effective sorting is needed. In view of the current development of deep learning, it can provide a good auxiliary role for classification and realize automatic classification. In this paper, the ResNet-50 convolutional neural network based on the transfer learning method is applied to design the image… More >

  • Open Access

    ARTICLE

    Mammographic Image Classification Using Deep Neural Network for Computer-Aided Diagnosis

    Charles Arputham1,*, Krishnaraj Nagappan2, Lenin Babu Russeliah3, AdalineSuji Russeliah4

    Intelligent Automation & Soft Computing, Vol.27, No.3, pp. 747-759, 2021, DOI:10.32604/iasc.2021.012077

    Abstract Breast cancer detection is a crucial topic in the healthcare sector. Breast cancer is a major reason for the increased mortality rate in recent years among women, specifically in developed and underdeveloped countries around the world. The incidence rate is less in India than in developed countries, but awareness must be increased. This paper focuses on an efficient deep learning-based diagnosis and classification technique to detect breast cancer from mammograms. The model includes preprocessing, segmentation, feature extraction, and classification. At the initial level, Laplacian filtering is applied to identify the portions of edges in mammogram images that are highly sensitive… More >

  • Open Access

    ARTICLE

    Deep 3D-Multiscale DenseNet for Hyperspectral Image Classification Based on Spatial-Spectral Information

    Haifeng Song1, Weiwei Yang1,*, Haiyan Yuan2, Harold Bufford3

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1441-1458, 2020, DOI:10.32604/iasc.2020.011988

    Abstract There are two main problems that lead to unsatisfactory classification performance for hyperspectral remote sensing images (HSIs). One issue is that the HSI data used for training in deep learning is insufficient, therefore a deeper network is unfavorable for spatial-spectral feature extraction. The other problem is that as the depth of a deep neural network increases, the network becomes more prone to overfitting. To address these problems, a dual-channel 3D-Multiscale DenseNet (3DMSS) is proposed to boost the discriminative capability for HSI classification. The proposed model has several distinct advantages. First, the model consists of dual channels that can extract both… More >

  • Open Access

    ARTICLE

    Image Recognition of Citrus Diseases Based on Deep Learning

    Zongshuai Liu1, Xuyu Xiang1,2,*, Jiaohua Qin1, Yun Tan1, Qin Zhang1, Neal N. Xiong3

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 457-466, 2021, DOI:10.32604/cmc.2020.012165

    Abstract In recent years, with the development of machine learning and deep learning, it is possible to identify and even control crop diseases by using electronic devices instead of manual observation. In this paper, an image recognition method of citrus diseases based on deep learning is proposed. We built a citrus image dataset including six common citrus diseases. The deep learning network is used to train and learn these images, which can effectively identify and classify crop diseases. In the experiment, we use MobileNetV2 model as the primary network and compare it with other network models in the aspect of speed,… More >

Displaying 81-90 on page 9 of 98. Per Page