Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (429)
  • Open Access

    ARTICLE

    EDU-GAN: Edge Enhancement Generative Adversarial Networks with Dual-Domain Discriminators for Inscription Images Denoising

    Yunjing Liu1,, Erhu Zhang1,2,,*, Jingjing Wang3, Guangfeng Lin2, Jinghong Duan4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1633-1653, 2024, DOI:10.32604/cmc.2024.052611

    Abstract Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue. Different from natural images, character images pay more attention to stroke information. However, existing models mainly consider pixel-level information while ignoring structural information of the character, such as its edge and glyph, resulting in reconstructed images with mottled local structure and character damage. To solve these problems, we propose a novel generative adversarial network (GAN) framework based on an edge-guided generator and a discriminator constructed by a dual-domain U-Net framework, i.e., EDU-GAN. Unlike existing frameworks, the generator introduces the… More >

  • Open Access

    ARTICLE

    Deep Transfer Learning Models for Mobile-Based Ocular Disorder Identification on Retinal Images

    Roseline Oluwaseun Ogundokun1,2, Joseph Bamidele Awotunde3, Hakeem Babalola Akande4, Cheng-Chi Lee5,6,*, Agbotiname Lucky Imoize7,8

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 139-161, 2024, DOI:10.32604/cmc.2024.052153

    Abstract Mobile technology is developing significantly. Mobile phone technologies have been integrated into the healthcare industry to help medical practitioners. Typically, computer vision models focus on image detection and classification issues. MobileNetV2 is a computer vision model that performs well on mobile devices, but it requires cloud services to process biometric image information and provide predictions to users. This leads to increased latency. Processing biometrics image datasets on mobile devices will make the prediction faster, but mobiles are resource-restricted devices in terms of storage, power, and computational speed. Hence, a model that is small in size,… More >

  • Open Access

    ARTICLE

    Pulmonary Edema and Pleural Effusion Detection Using EfficientNet-V1-B4 Architecture and AdamW Optimizer from Chest X-Rays Images

    Anas AbuKaraki1, Tawfi Alrawashdeh1, Sumaya Abusaleh1, Malek Zakarya Alksasbeh1,*, Bilal Alqudah1, Khalid Alemerien2, Hamzah Alshamaseen3

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1055-1073, 2024, DOI:10.32604/cmc.2024.051420

    Abstract This paper presents a novel multiclass system designed to detect pleural effusion and pulmonary edema on chest X-ray images, addressing the critical need for early detection in healthcare. A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14, PadChest, and CheXpert databases, with 10,287, 6022, and 12,000 samples representing Pleural Effusion, Pulmonary Edema, and Normal cases, respectively. Consequently, the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization (CLAHE) method to boost the local contrast of the X-ray samples, then resizing the images to 380 × 380 dimensions, followed by using the data… More >

  • Open Access

    ARTICLE

    GAN-DIRNet: A Novel Deformable Image Registration Approach for Multimodal Histological Images

    Haiyue Li1, Jing Xie2, Jing Ke3, Ye Yuan1, Xiaoyong Pan1, Hongyi Xin4, Hongbin Shen1,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 487-506, 2024, DOI:10.32604/cmc.2024.049640

    Abstract Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue. Convolutional neural network (CNN) and generative adversarial network (GAN) are pivotal in medical image registration. However, existing methods often struggle with severe interference and deformation, as seen in histological images of conditions like Cushing’s disease. We argue that the failure of current approaches lies in underutilizing the feature extraction capability of the discriminator in GAN. In this study, we propose a novel multi-modal registration approach GAN-DIRNet based on GAN for deformable histological image registration. To… More >

  • Open Access

    ARTICLE

    Enhancing Multi-Modality Medical Imaging: A Novel Approach with Laplacian Filter + Discrete Fourier Transform Pre-Processing and Stationary Wavelet Transform Fusion

    Mian Muhammad Danyal1,2, Sarwar Shah Khan3,4,*, Rahim Shah Khan5, Saifullah Jan2, Naeem ur Rahman6

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 35-53, 2024, DOI:10.32604/jimh.2024.051340

    Abstract Multi-modality medical images are essential in healthcare as they provide valuable insights for disease diagnosis and treatment. To harness the complementary data provided by various modalities, these images are amalgamated to create a single, more informative image. This fusion process enhances the overall quality and comprehensiveness of the medical imagery, aiding healthcare professionals in making accurate diagnoses and informed treatment decisions. In this study, we propose a new hybrid pre-processing approach, Laplacian Filter + Discrete Fourier Transform (LF+DFT), to enhance medical images before fusion. The LF+DFT approach highlights key details, captures small information, and sharpens… More >

  • Open Access

    ARTICLE

    GliomaCNN: An Effective Lightweight CNN Model in Assessment of Classifying Brain Tumor from Magnetic Resonance Images Using Explainable AI

    Md. Atiqur Rahman1, Mustavi Ibne Masum1, Khan Md Hasib2, M. F. Mridha3,*, Sultan Alfarhood4, Mejdl Safran4,*, Dunren Che5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2425-2448, 2024, DOI:10.32604/cmes.2024.050760

    Abstract Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality. This study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging (MRI). It focuses on distinguishing between Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG). LGGs are benign and typically manageable with surgical resection, while HGGs are malignant and more aggressive. The research introduces an innovative custom convolutional neural network (CNN) model, Glioma-CNN. GliomaCNN stands out as a lightweight CNN model compared to its predecessors. The research utilized the BraTS 2020 More >

  • Open Access

    ARTICLE

    Fine-Grained Ship Recognition Based on Visible and Near-Infrared Multimodal Remote Sensing Images: Dataset, Methodology and Evaluation

    Shiwen Song, Rui Zhang, Min Hu*, Feiyao Huang

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5243-5271, 2024, DOI:10.32604/cmc.2024.050879

    Abstract Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security. Currently, with the emergence of massive high-resolution multi-modality images, the use of multi-modality images for fine-grained recognition has become a promising technology. Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples. The key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more discriminative fusion features. The attention mechanism helps the model to pinpoint the key information in the image, resulting in a… More >

  • Open Access

    ARTICLE

    An Improved UNet Lightweight Network for Semantic Segmentation of Weed Images in Corn Fields

    Yu Zuo1, Wenwen Li2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4413-4431, 2024, DOI:10.32604/cmc.2024.049805

    Abstract In cornfields, factors such as the similarity between corn seedlings and weeds and the blurring of plant edge details pose challenges to corn and weed segmentation. In addition, remote areas such as farmland are usually constrained by limited computational resources and limited collected data. Therefore, it becomes necessary to lighten the model to better adapt to complex cornfield scene, and make full use of the limited data information. In this paper, we propose an improved image segmentation algorithm based on unet. Firstly, the inverted residual structure is introduced into the contraction path to reduce the… More >

  • Open Access

    ARTICLE

    CrossLinkNet: An Explainable and Trustworthy AI Framework for Whole-Slide Images Segmentation

    Peng Xiao1, Qi Zhong2, Jingxue Chen1, Dongyuan Wu1, Zhen Qin1, Erqiang Zhou1,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4703-4724, 2024, DOI:10.32604/cmc.2024.049791

    Abstract In the intelligent medical diagnosis area, Artificial Intelligence (AI)’s trustworthiness, reliability, and interpretability are critical, especially in cancer diagnosis. Traditional neural networks, while excellent at processing natural images, often lack interpretability and adaptability when processing high-resolution digital pathological images. This limitation is particularly evident in pathological diagnosis, which is the gold standard of cancer diagnosis and relies on a pathologist’s careful examination and analysis of digital pathological slides to identify the features and progression of the disease. Therefore, the integration of interpretable AI into smart medical diagnosis is not only an inevitable technological trend but… More >

  • Open Access

    ARTICLE

    Improving the Transmission Security of Vein Images Using a Bezier Curve and Long Short-Term Memory

    Ahmed H. Alhadethi1,*, Ikram Smaoui2, Ahmed Fakhfakh3, Saad M. Darwish4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4825-4844, 2024, DOI:10.32604/cmc.2024.047852

    Abstract The act of transmitting photos via the Internet has become a routine and significant activity. Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced. This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images. The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression. This paper introduces… More >

Displaying 1-10 on page 1 of 429. Per Page