Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (512)
  • Open Access

    ARTICLE

    Design of Virtual Driving Test Environment for Collecting and Validating Bad Weather SiLS Data Based on Multi-Source Images Using DCU with V2X-Car Edge Cloud

    Sun Park*, JongWon Kim

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072865 - 12 January 2026

    Abstract In real-world autonomous driving tests, unexpected events such as pedestrians or wild animals suddenly entering the driving path can occur. Conducting actual test drives under various weather conditions may also lead to dangerous situations. Furthermore, autonomous vehicles may operate abnormally in bad weather due to limitations of their sensors and GPS. Driving simulators, which replicate driving conditions nearly identical to those in the real world, can drastically reduce the time and cost required for market entry validation; consequently, they have become widely used. In this paper, we design a virtual driving test environment capable of More >

  • Open Access

    ARTICLE

    CCLNet: An End-to-End Lightweight Network for Small-Target Forest Fire Detection in UAV Imagery

    Qian Yu1,2, Gui Zhang2,*, Ying Wang1, Xin Wu2, Jiangshu Xiao2, Wenbing Kuang1, Juan Zhang2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072172 - 12 January 2026

    Abstract Detecting small forest fire targets in unmanned aerial vehicle (UAV) images is difficult, as flames typically cover only a very limited portion of the visual scene. This study proposes Context-guided Compact Lightweight Network (CCLNet), an end-to-end lightweight model designed to detect small forest fire targets while ensuring efficient inference on devices with constrained computational resources. CCLNet employs a three-stage network architecture. Its key components include three modules. C3F-Convolutional Gated Linear Unit (C3F-CGLU) performs selective local feature extraction while preserving fine-grained high-frequency flame details. Context-Guided Feature Fusion Module (CGFM) replaces plain concatenation with triplet-attention interactions to… More >

  • Open Access

    ARTICLE

    Diffusion-Driven Generation of Synthetic Complex Concrete Crack Images for Segmentation Tasks

    Pengwei Guo1, Xiao Tan2,3,*, Yiming Liu4

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071317 - 08 January 2026

    Abstract Crack detection accuracy in computer vision is often constrained by limited annotated datasets. Although Generative Adversarial Networks (GANs) have been applied for data augmentation, they frequently introduce blurs and artifacts. To address this challenge, this study leverages Denoising Diffusion Probabilistic Models (DDPMs) to generate high-quality synthetic crack images, enriching the training set with diverse and structurally consistent samples that enhance the crack segmentation. The proposed framework involves a two-stage pipeline: first, DDPMs are used to synthesize high-fidelity crack images that capture fine structural details. Second, these generated samples are combined with real data to train… More >

  • Open Access

    ARTICLE

    Automatic Recognition Algorithm of Pavement Defects Based on S3M and SDI Modules Using UAV-Collected Road Images

    Hongcheng Zhao1, Tong Yang 2, Yihui Hu2, Fengxiang Guo2,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.068987 - 08 January 2026

    Abstract With the rapid development of transportation infrastructure, ensuring road safety through timely and accurate highway inspection has become increasingly critical. Traditional manual inspection methods are not only time-consuming and labor-intensive, but they also struggle to provide consistent, high-precision detection and real-time monitoring of pavement surface defects. To overcome these limitations, we propose an Automatic Recognition of Pavement Defect (ARPD) algorithm, which leverages unmanned aerial vehicle (UAV)-based aerial imagery to automate the inspection process. The ARPD framework incorporates a backbone network based on the Selective State Space Model (S3M), which is designed to capture long-range temporal dependencies.… More >

  • Open Access

    REVIEW

    Toward Robust Deepfake Defense: A Review of Deepfake Detection and Prevention Techniques in Images

    Ahmed Abdel-Wahab1, Mohammad Alkhatib2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-34, 2026, DOI:10.32604/cmc.2025.070010 - 09 December 2025

    Abstract Deepfake is a sort of fake media made by advanced AI methods like Generative Adversarial Networks (GANs). Deepfake technology has many useful uses in education and entertainment, but it also raises a lot of ethical, social, and security issues, such as identity theft, the dissemination of false information, and privacy violations. This study seeks to provide a comprehensive analysis of several methods for identifying and circumventing Deepfakes, with a particular focus on image-based Deepfakes. There are three main types of detection methods: classical, machine learning (ML) and deep learning (DL)-based, and hybrid methods. There are… More >

  • Open Access

    ARTICLE

    A Super-Resolution Generative Adversarial Network for Remote Sensing Images Based on Improved Residual Module and Attention Mechanism

    Yifan Zhang1, Yong Gan2,*, Mengke Tang1, Xinxin Gan3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068880 - 09 December 2025

    Abstract High-resolution remote sensing imagery is essential for critical applications such as precision agriculture, urban management planning, and military reconnaissance. Although significant progress has been made in single-image super-resolution (SISR) using generative adversarial networks (GANs), existing approaches still face challenges in recovering high-frequency details, effectively utilizing features, maintaining structural integrity, and ensuring training stability—particularly when dealing with the complex textures characteristic of remote sensing imagery. To address these limitations, this paper proposes the Improved Residual Module and Attention Mechanism Network (IRMANet), a novel architecture specifically designed for remote sensing image reconstruction. IRMANet builds upon the Super-Resolution… More >

  • Open Access

    ARTICLE

    Validation of Contextual Model Principles through Rotated Images Interpretation

    Illia Khurtin*, Mukesh Prasad

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.067481 - 09 December 2025

    Abstract The field of artificial intelligence has advanced significantly in recent years, but achieving a human-like or Artificial General Intelligence (AGI) remains a theoretical challenge. One hypothesis suggests that a key issue is the formalisation of extracting meaning from information. Meaning emerges through a three-stage interpretative process, where the spectrum of possible interpretations is collapsed into a singular outcome by a particular context. However, this approach currently lacks practical grounding. In this research, we developed a model based on contexts, which applies interpretation principles to the visual information to address this gap. The field of computer… More >

  • Open Access

    ARTICLE

    Enhanced Capacity Reversible Data Hiding Based on Pixel Value Ordering in Triple Stego Images

    Kim Sao Nguyen, Ngoc Dung Bui*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069355 - 10 November 2025

    Abstract Reversible data hiding (RDH) enables secret data embedding while preserving complete cover image recovery, making it crucial for applications requiring image integrity. The pixel value ordering (PVO) technique used in multi-stego images provides good image quality but often results in low embedding capability. To address these challenges, this paper proposes a high-capacity RDH scheme based on PVO that generates three stego images from a single cover image. The cover image is partitioned into non-overlapping blocks with pixels sorted in ascending order. Four secret bits are embedded into each block’s maximum pixel value, while three additional More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images

    Ghadah Naif Alwakid*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068666 - 10 November 2025

    Abstract Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that significantly affects cognitive function, making early and accurate diagnosis essential. Traditional Deep Learning (DL)-based approaches often struggle with low-contrast MRI images, class imbalance, and suboptimal feature extraction. This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans. Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization (CLAHE) and Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN). A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient (MCC)-based evaluation method into the design.… More >

  • Open Access

    ARTICLE

    The Research on Low-Light Autonomous Driving Object Detection Method

    Jianhua Yang*, Zhiwei Lv, Changling Huo

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068442 - 10 November 2025

    Abstract Aiming at the scale adaptation of automatic driving target detection algorithms in low illumination environments and the shortcomings in target occlusion processing, this paper proposes a YOLO-LKSDS automatic driving detection model. Firstly, the Contrast-Limited Adaptive Histogram Equalisation (CLAHE) image enhancement algorithm is improved to increase the image contrast and enhance the detailed features of the target; then, on the basis of the YOLOv5 model, the Kmeans++ clustering algorithm is introduced to obtain a suitable anchor frame, and SPPELAN spatial pyramid pooling is improved to enhance the accuracy and robustness of the model for multi-scale target… More >

Displaying 1-10 on page 1 of 512. Per Page