Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    The Failure Analysis of Carbon Fiber-Reinforced Epoxy Composites against Impact Loading with Numerical and Experimental Investigations

    Md Salah Uddin*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1051-1073, 2025, DOI:10.32604/jpm.2025.070688 - 26 December 2025

    Abstract Carbon fiber-reinforced composites (CFRCs) have a wide range of applications in the aerospace, automotive, and energy sectors. A higher specific strength-to-weight ratio is desired in high-performance applications. The failure mechanism of CFRCs involves multiscale phenomena, such as failure that can occur at the matrix, fibers, interface, layers, lamina, and laminates. When an impactor hits the CFRCs, the design involves analyzing each of these stages to prevent failure and optimize the properties of CFRCs under various loading conditions. A numerical model was employed to predict the fracture toughness of CFRCs with varying weight fractions and orientations.… More >

  • Open Access

    ARTICLE

    Dynamic Response Research of Dangerous Rockfall Impact Protection Structures

    Huaiqin Liu1, Meng Li1, Jianwen Shao2, Weishen Zhang1, Qifan Yang1, Yutong Li1, Tian Su1,3,*, Xuefeng Mei4

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1563-1588, 2025, DOI:10.32604/sdhm.2025.073009 - 17 November 2025

    Abstract Rock collapse is a significant geological disaster that poses a serious threat to life and property in mountainous regions worldwide. Investigating the response of protective structures to rockfall impacts can provide valuable references for the design and placement of such structures. In this study, RocPro3D and ABAQUS were employed to comprehensively analyze rockfall movement trajectories and the structural response upon impact. The results indicate that when the impact velocity of rockfall at the protective structure reaches 20–30 m/sec, the corresponding bounce height ranges from 5 to 8 m, and most rockfall accumulates at the slope More > Graphic Abstract

    Dynamic Response Research of Dangerous Rockfall Impact Protection Structures

  • Open Access

    ARTICLE

    Dynamic Response and Failure Analysis of Steel Sheet Pile Support Structures in Bank Slopes under Pile Driving Impact Loads

    Ling Ji1,2,*, Nan Jiang3, Yingbo Ren3, Tao Yin1, Haibo Wang1, Bing Cheng4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 267-288, 2025, DOI:10.32604/cmes.2025.066596 - 31 July 2025

    Abstract During the construction of bank slopes involving pile driving, ensuring slope stability is crucial. This requires the design of appropriate support systems and a thorough evaluation of the failure mechanisms of pile structures under dynamic loading conditions. Based on the Huarong Coal Wharf project, various support schemes are analyzed using numerical simulation methods to calculate and compare slope stability coefficients. The optimal scheme is then identified. Under the selected support scheme, a numerical model of double-row suspended steel sheet piles is developed to investigate the dynamic response of the pile structures under pile driving loads.… More >

  • Open Access

    ARTICLE

    Study on the Dynamic Mechanical Damage Behavior of Concrete Based on the Phase-Field Model

    Zhishui Sheng1, Hong Jiang1, Gang Liu2, Fulai Zhang3, Wei Zhang3,*

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 531-548, 2025, DOI:10.32604/sdhm.2024.059662 - 03 April 2025

    Abstract Concrete materials are employed extensively in a variety of large-scale structures due to their economic viability and superior mechanical properties. During the service life of concrete structures, they are inevitably subjected to damage from impact loading from natural disasters, such as earthquakes and storms. In recent years, the phase-field model has demonstrated exceptional capability in predicting the stochastic initiation, propagation, and bifurcation of cracks in materials. This study employs a phase-field model to focus on the rate dependency and failure response of concrete under impact deformation. A viscosity coefficient is introduced within the phase-field model… More >

  • Open Access

    ARTICLE

    Impact Behaviour of Hybrid Jute/Epoxy Composites at Different Temperature Conditions

    Somasundaram Karthiyaini1, Mohan Sasikumar2,*, Abraham Jebamalar3, P. A. Prasob2

    Journal of Polymer Materials, Vol.41, No.4, pp. 219-237, 2024, DOI:10.32604/jpm.2024.053829 - 16 December 2024

    Abstract This manuscript presents the projectile impact behavior of hybrid jute/epoxy composite laminates using an instrumented air gun impact setup with the projectile moving in the vertical direction. An approach based on the stiffness change is used to predict the projectile impact response of hybrid jute epoxy-filled laminates impacted with a stainless-steel projectile. The experimental validation of the parameters like dynamic hardness (Hd) coefficient of restitution (COR), natural frequency, damping factor, and loss factor was used to analyze the impact behavior of jute/epoxy composites strengthened with fillers ZrO2, ZnO, and TiO2. The free vibration tests of the More >

  • Open Access

    ARTICLE

    Dynamic Mechanical Behavior and Numerical Simulation of an Ancient Underground Rock Mass under Impact Loading

    Baoping Zou*, Zhiping Liu, Weifeng Jin, Haonan Ding, Zhanyou Luo

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 517-539, 2023, DOI:10.32604/cmes.2022.020853 - 24 August 2022

    Abstract To study the dynamic mechanical properties of tuff under different environmental conditions, the tuff from an ancient quarry in Shepan Island was prepared. The impact damage to the rock was tested using a triaxial dynamic impact mechanical testing system (TDIMTS) with different ground stresses, temperatures, and groundwater pressures. The time-strain relationship, dynamic stress-strain relationship, energy dissipation law, energy-peak strain relationship, and the impact damage pattern of the tuff specimens under impact air pressures were investigated. The TDIMTS experiment on ancient underground rock mass under impact loading was also simulated using the finite element analysis software… More >

  • Open Access

    ARTICLE

    State Estimation of Regional Power Systems with Source-Load Two-Terminal Uncertainties

    Ziwei Jiang1, Shuaibing Li1,*, Xiping Ma2, Xingmin Li2, Yongqiang Kang1, Hongwei Li3, Haiying Dong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.1, pp. 295-317, 2022, DOI:10.32604/cmes.2022.019996 - 02 June 2022

    Abstract

    The development and utilization of large-scale distributed power generation and the increase of impact loads represented by electric locomotives and new energy electric vehicles have brought great challenges to the stable operation of the regional power grid. To improve the prediction accuracy of power systems with source-load two-terminal uncertainties, an adaptive cubature Kalman filter algorithm based on improved initial noise covariance matrix Q0 is proposed in this paper. In the algorithm, the Q0 is used to offset the modeling error, and solves the problem of large voltage amplitude and phase fluctuation of the source-load two-terminal uncertain systems.

    More >

  • Open Access

    ARTICLE

    Mechanical Response and Energy Dissipation Analysis of Heat-Treated Granite Under Repeated Impact Loading

    Zhiliang Wang1,*, Nuocheng Tian2, Jianguo Wang3, Shengqi Yang3, Guang Liu1

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 275-296, 2019, DOI:10.32604/cmc.2019.04247

    Abstract The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading. The granite samples were firstly heat-treated at the temperature of 20°C, 200°C, 400°C, and 600°C, respectively. The thermal damage characteristics of these samples were then observed and measured before impact tests. Dynamic impact compression tests finally were carried out using a modified split-Hopkinson pressure bar under three impact velocities of 12 m/s, 15 m/s, and 18 m/s. These test results show that the mineral composition and the main oxides of the granite do not change with these treatment temperatures.… More >

  • Open Access

    ARTICLE

    A Particle Simulation of 2-D Vessel Motions Interacting with Liquid-Sloshing Cargo

    Byung-Hyuk Lee1, Se-min Jeong2, Sung-Chul Hwang2, Jong-Chun Park3, Moo-Hyun Kim4

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.1, pp. 43-63, 2013, DOI:10.3970/cmes.2013.091.043

    Abstract The violent free-surface motions interacting with floating vessels containing inner liquid tanks are investigated by using the newly developed Moving Particle Semi-implicit (MPS) method for 2-dimensional incompressible flow simulation. In the present numerical examples, many efficient and robust algorithms have been developed and applied to improve the overall quality and efficiency in solving various highly nonlinear free-surface problems and evaluating impact pressures compared to the original MPS method proposed by Koshizuka and Oka (1996). For illustration, the improved MPS method is applied to the simulation of nonlinear floating-body motions, violent sloshing motions and corresponding impact More >

  • Open Access

    ARTICLE

    An Application of Support Vector Regression for Impact Load Estimation Using Fiber Bragg Grating Sensors

    Clyde K Coelho, Cristobal Hiche, Aditi Chattopadhyay

    Structural Durability & Health Monitoring, Vol.7, No.1&2, pp. 65-82, 2011, DOI:10.3970/sdhm.2011.007.065

    Abstract Low velocity impacts on composite plates often create subsurface damage that is difficult to diagnose. Fiber Bragg grating (FBG) sensors can be used to detect subsurface damage in composite laminates due to low velocity impact. This paper focuses on the prediction of impact loading in composite structures as a function of time using a support vector regression approach. A time delay embedding feature extraction scheme is used since it can characterize the dynamics of the impact using the sensor signals. The novelty of this approach is that it can be applied on complex geometries and… More >

Displaying 1-10 on page 1 of 14. Per Page