Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (506)
  • Open Access

    ARTICLE

    An Intelligent Multi-Stage GA–SVM Hybrid Optimization Framework for Feature Engineering and Intrusion Detection in Internet of Things Networks

    Isam Bahaa Aldallal1, Abdullahi Abdu Ibrahim1,*, Saadaldeen Rashid Ahmed2,3

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075212 - 10 February 2026

    Abstract The rapid growth of IoT networks necessitates efficient Intrusion Detection Systems (IDS) capable of addressing dynamic security threats under constrained resource environments. This paper proposes a hybrid IDS for IoT networks, integrating Support Vector Machine (SVM) and Genetic Algorithm (GA) for feature selection and parameter optimization. The GA reduces the feature set from 41 to 7, achieving a 30% reduction in overhead while maintaining an attack detection rate of 98.79%. Evaluated on the NSL-KDD dataset, the system demonstrates an accuracy of 97.36%, a recall of 98.42%, and an F1-score of 96.67%, with a low false More >

  • Open Access

    ARTICLE

    Transformer-Driven Multimodal for Human-Object Detection and Recognition for Intelligent Robotic Surveillance

    Aman Aman Ullah1,2,#, Yanfeng Wu1,#, Shaheryar Najam3, Nouf Abdullah Almujally4, Ahmad Jalal5,6,*, Hui Liu1,7,8,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072508 - 10 February 2026

    Abstract Human object detection and recognition is essential for elderly monitoring and assisted living however, models relying solely on pose or scene context often struggle in cluttered or visually ambiguous settings. To address this, we present SCENET-3D, a transformer-driven multimodal framework that unifies human-centric skeleton features with scene-object semantics for intelligent robotic vision through a three-stage pipeline. In the first stage, scene analysis, rich geometric and texture descriptors are extracted from RGB frames, including surface-normal histograms, angles between neighboring normals, Zernike moments, directional standard deviation, and Gabor-filter responses. In the second stage, scene-object analysis, non-human objects… More >

  • Open Access

    ARTICLE

    Intelligent Human Interaction Recognition with Multi-Modal Feature Extraction and Bidirectional LSTM

    Muhammad Hamdan Azhar1,2,#, Yanfeng Wu1,#, Nouf Abdullah Almujally3, Shuaa S. Alharbi4, Asaad Algarni5, Ahmad Jalal2,6, Hui Liu1,7,8,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.071988 - 10 February 2026

    Abstract Recognizing human interactions in RGB videos is a critical task in computer vision, with applications in video surveillance. Existing deep learning-based architectures have achieved strong results, but are computationally intensive, sensitive to video resolution changes and often fail in crowded scenes. We propose a novel hybrid system that is computationally efficient, robust to degraded video quality and able to filter out irrelevant individuals, making it suitable for real-life use. The system leverages multi-modal handcrafted features for interaction representation and a deep learning classifier for capturing complex dependencies. Using Mask R-CNN and YOLO11-Pose, we extract grayscale… More >

  • Open Access

    REVIEW

    Sensor Fusion Models in Autonomous Systems: A Review

    Sangeeta Mittal1, Chetna Gupta1, Varun Gupta2,3,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.071599 - 10 February 2026

    Abstract This survey presents a comprehensive examination of sensor fusion research spanning four decades, tracing the methodological evolution, application domains, and alignment with classical hierarchical models. Building on this long-term trajectory, the foundational approaches such as probabilistic inference, early neural networks, rule-based methods, and feature-level fusion established the principles of uncertainty handling and multi-sensor integration in the 1990s. The fusion methods of 2000s marked the consolidation of these ideas through advanced Kalman and particle filtering, Bayesian–Dempster–Shafer hybrids, distributed consensus algorithms, and machine learning ensembles for more robust and domain-specific implementations. From 2011 to 2020, the widespread… More >

  • Open Access

    ARTICLE

    FAIR-DQL: Fairness-Aware Deep Q-Learning for Enhanced Resource Allocation and RIS Optimization in High-Altitude Platform Networks

    Muhammad Ejaz1, Muhammad Asim2,*, Mudasir Ahmad Wani2,3, Kashish Ara Shakil4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072464 - 12 January 2026

    Abstract The integration of High-Altitude Platform Stations (HAPS) with Reconfigurable Intelligent Surfaces (RIS) represents a critical advancement for next-generation wireless networks, offering unprecedented opportunities for ubiquitous connectivity. However, existing research reveals significant gaps in dynamic resource allocation, joint optimization, and equitable service provisioning under varying channel conditions, limiting practical deployment of these technologies. This paper addresses these challenges by proposing a novel Fairness-Aware Deep Q-Learning (FAIR-DQL) framework for joint resource management and phase configuration in HAPS-RIS systems. Our methodology employs a comprehensive three-tier algorithmic architecture integrating adaptive power control, priority-based user scheduling, and dynamic learning mechanisms. More >

  • Open Access

    ARTICLE

    Action Recognition via Shallow CNNs on Intelligently Selected Motion Data

    Jalees Ur Rahman1, Muhammad Hanif1, Usman Haider2,*, Saeed Mian Qaisar3,*, Sarra Ayouni4

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071251 - 12 January 2026

    Abstract Deep neural networks have achieved excellent classification results on several computer vision benchmarks. This has led to the popularity of machine learning as a service, where trained algorithms are hosted on the cloud and inference can be obtained on real-world data. In most applications, it is important to compress the vision data due to the enormous bandwidth and memory requirements. Video codecs exploit spatial and temporal correlations to achieve high compression ratios, but they are computationally expensive. This work computes the motion fields between consecutive frames to facilitate the efficient classification of videos. However, contrary… More >

  • Open Access

    ARTICLE

    Dynamic Boundary Optimization via IDBO-VMD: A Novel Power Allocation Strategy for Hybrid Energy Storage with Enhanced Grid Stability

    Zujun Ding, Qi Xiang, Chengyi Li, Mengyu Ma, Chutong Zhang, Xinfa Gu, Jiaming Shi, Hui Huang, Aoyun Xia, Wenjie Wang, Wan Chen, Ziluo Yu, Jie Ji*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070442 - 27 December 2025

    Abstract In order to address environmental pollution and resource depletion caused by traditional power generation, this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved Dung Beetle Optimizer (IDBO) with Variational Mode Decomposition (VMD). The IDBO-VMD method is designed to enhance the accuracy and efficiency of wind-speed time-series decomposition and to effectively smooth photovoltaic power fluctuations. This study innovatively improves the traditional variational mode decomposition (VMD) algorithm, and significantly improves the accuracy and adaptive ability of signal decomposition by IDBO self-optimization of key parameters K and a. On this basis, Fourier transform technology… More >

  • Open Access

    ARTICLE

    Energy Efficiency and Total Mission Completion Time Tradeoff in Multiple UAVs-Mounted IRS-Assisted Data Collection System

    Hong Zhao, Hongbin Chen*, Zhihui Guo, Ling Zhan, Shichao Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.072776 - 09 December 2025

    Abstract UAV-mounted intelligent reflecting surface (IRS) helps address the line-of-sight (LoS) blockage between sensor nodes (SNs) and the fusion center (FC) in Internet of Things (IoT). This paper considers an IoT assisted by multiple UAVs-mounted IRS (U-IRS), where the data from ground SNs are transmitted to the FC. In practice, energy efficiency (EE) and mission completion time are crucial metrics for evaluating system performance and operational costs. Recognizing their importance during data collection, we formulate a multi-objective optimization problem to maximize EE and minimize total mission completion time simultaneously. To characterize this tradeoff while considering optimization… More >

  • Open Access

    ARTICLE

    State Space Guided Spatio-Temporal Network for Efficient Long-Term Traffic Prediction

    Guangyu Huo, Chang Su, Xiaoyu Zhang*, Xiaohui Cui, Lizhong Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.072147 - 09 December 2025

    Abstract Long-term traffic flow prediction is a crucial component of intelligent transportation systems within intelligent networks, requiring predictive models that balance accuracy with low-latency and lightweight computation to optimize traffic management and enhance urban mobility and sustainability. However, traditional predictive models struggle to capture long-term temporal dependencies and are computationally intensive, limiting their practicality in real-time. Moreover, many approaches overlook the periodic characteristics inherent in traffic data, further impacting performance. To address these challenges, we introduce ST-MambaGCN, a State-Space-Based Spatio-Temporal Graph Convolution Network. Unlike conventional models, ST-MambaGCN replaces the temporal attention layer with Mamba, a state-space More >

  • Open Access

    REVIEW

    Dual-Mode Data-Driven Iterative Learning Control: Applications in Precision Manufacturing and Intelligent Transportation Systems

    Lei Wang1,2, Menghan Wei2, Ziwei Huangfu3, Shunjie Zhu2, Xuejian Ge1,*, Zhengquan Li4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-32, 2026, DOI:10.32604/cmc.2025.071295 - 09 December 2025

    Abstract Iterative Learning Control (ILC) provides an effective framework for optimizing repetitive tasks, making it particularly suitable for high-precision applications in both precision manufacturing and intelligent transportation systems (ITS). This paper presents a systematic review of ILC’s developmental progress, current methodologies, and practical implementations across these two critical domains. The review first analyzes the key technical challenges encountered when integrating ILC into precision manufacturing workflows. Through case studies, it evaluates demonstrated improvements in positioning accuracy, surface finish quality, and production throughput. Furthermore, the study examines ILC’s applications in ITS, with particular focus on vehicular motion control More >

Displaying 1-10 on page 1 of 506. Per Page