Qiang Gao1, Lei Shen1,*, Jiaming Shi2, Xinfa Gu2, Shanyun Gu1, Yuwei Ge1, Yang Xie1, Xiaoqiong Zhu1, Baoguo Zang1, Ming Zhang1, Muhammad Shahzad Nazir2, Jie Ji2
Energy Engineering, Vol.122, No.7, pp. 2767-2800, 2025, DOI:10.32604/ee.2025.065600
- 27 June 2025
Abstract The rapid proliferation of renewable energy integration and escalating grid operational complexity have intensified demands for resilient self-healing mechanisms in modern power systems. Conventional approaches relying on static models and heuristic rules exhibit limitations in addressing dynamic fault propagation and multi-modal data fusion. This study proposes a Transformer-enhanced intelligent microgrid self-healing framework that synergizes large language models (LLMs) with adaptive optimization, achieving three key innovations: (1) A hierarchical attention mechanism incorporating grid impedance characteristics for spatiotemporal feature extraction, (2) Dynamic covariance estimation Kalman filtering with wavelet packet energy entropy thresholds (Daubechies-4 basis, 6-level decomposition), and… More >