Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (409)
  • Open Access

    ARTICLE

    Intelligent Fault Diagnosis Method of Rolling Bearings Based on Transfer Residual Swin Transformer with Shifted Windows

    Haomiao Wang1, Jinxi Wang2, Qingmei Sui2,*, Faye Zhang2, Yibin Li1, Mingshun Jiang2, Phanasindh Paitekul3

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 91-110, 2024, DOI:10.32604/sdhm.2023.041522

    Abstract Due to their robust learning and expression ability for complex features, the deep learning (DL) model plays a vital role in bearing fault diagnosis. However, since there are fewer labeled samples in fault diagnosis, the depth of DL models in fault diagnosis is generally shallower than that of DL models in other fields, which limits the diagnostic performance. To solve this problem, a novel transfer residual Swin Transformer (RST) is proposed for rolling bearings in this paper. RST has 24 residual self-attention layers, which use the hierarchical design and the shifted window-based residual self-attention. Combined with transfer learning techniques, the… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Federated Deep Learning Diagnostic Method for Multi-Stage Diseases

    Jinbo Yang1, Hai Huang1, Lailai Yin2, Jiaxing Qu3, Wanjuan Xie4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3085-3099, 2024, DOI:10.32604/cmes.2023.045417

    Abstract Diagnosing multi-stage diseases typically requires doctors to consider multiple data sources, including clinical symptoms, physical signs, biochemical test results, imaging findings, pathological examination data, and even genetic data. When applying machine learning modeling to predict and diagnose multi-stage diseases, several challenges need to be addressed. Firstly, the model needs to handle multimodal data, as the data used by doctors for diagnosis includes image data, natural language data, and structured data. Secondly, privacy of patients’ data needs to be protected, as these data contain the most sensitive and private information. Lastly, considering the practicality of the model, the computational requirements should… More >

  • Open Access

    ARTICLE

    Digital Twin Modeling and Simulation Optimization of Transmission Front and Middle Case Assembly Line

    Xianfeng Cao1, Meihua Yao2, Yahui Zhang3,*, Xiaofeng Hu4, Chuanxun Wu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3233-3253, 2024, DOI:10.32604/cmes.2023.030773

    Abstract As the take-off of China’s macro economy, as well as the rapid development of infrastructure construction, real estate industry, and highway logistics transportation industry, the demand for heavy vehicles is increasing rapidly, the competition is becoming increasingly fierce, and the digital transformation of the production line is imminent. As one of the most important components of heavy vehicles, the transmission front and middle case assembly lines have a high degree of automation, which can be used as a pilot for the digital transformation of production. To ensure the visualization of digital twins (DT), consistent control logic, and real-time data interaction,… More > Graphic Abstract

    Digital Twin Modeling and Simulation Optimization of Transmission Front and Middle Case Assembly Line

  • Open Access

    ARTICLE

    Chitosan/Sodium Alginate Multilayer pH-Sensitive Films Based on Layer-by-Layer Self-Assembly for Intelligent Packaging

    Mingxuan He1, Yahui Zheng1, Jiaming Shen1, Jiawei Shi1, Yongzheng Zhang1, Yinghong Xiao2,*, Jianfei Che1,*

    Journal of Renewable Materials, Vol.12, No.2, pp. 215-233, 2024, DOI:10.32604/jrm.2023.043659

    Abstract

    The abuse of plastic food packaging has brought about severe white pollution issues around the world. Developing green and sustainable biomass packaging is an effective way to solve this problem. Hence, a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer (LBL) self-assembly method. With the help of superior interaction between the layers, the multilayer film possesses excellent mechanical properties (with a tensile strength of 50 MPa). Besides, the film displays outstanding water retention property (blocking moisture of 97.56%) and ultraviolet blocking property. Anthocyanin is introduced into the film to detect the food quality since it is one natural plant… More > Graphic Abstract

    Chitosan/Sodium Alginate Multilayer pH-Sensitive Films Based on Layer-by-Layer Self-Assembly for Intelligent Packaging

  • Open Access

    ARTICLE

    CVTD: A Robust Car-Mounted Video Text Detector

    Di Zhou1, Jianxun Zhang1,*, Chao Li2, Yifan Guo1, Bowen Li1

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1821-1842, 2024, DOI:10.32604/cmc.2023.047236

    Abstract Text perception is crucial for understanding the semantics of outdoor scenes, making it a key requirement for building intelligent systems for driver assistance or autonomous driving. Text information in car-mounted videos can assist drivers in making decisions. However, Car-mounted video text images pose challenges such as complex backgrounds, small fonts, and the need for real-time detection. We proposed a robust Car-mounted Video Text Detector (CVTD). It is a lightweight text detection model based on ResNet18 for feature extraction, capable of detecting text in arbitrary shapes. Our model efficiently extracted global text positions through the Coordinate Attention Threshold Activation (CATA) and… More >

  • Open Access

    ARTICLE

    Method for Detecting Industrial Defects in Intelligent Manufacturing Using Deep Learning

    Bowen Yu, Chunli Xie*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1329-1343, 2024, DOI:10.32604/cmc.2023.046248

    Abstract With the advent of Industry 4.0, marked by a surge in intelligent manufacturing, advanced sensors embedded in smart factories now enable extensive data collection on equipment operation. The analysis of such data is pivotal for ensuring production safety, a critical factor in monitoring the health status of manufacturing apparatus. Conventional defect detection techniques, typically limited to specific scenarios, often require manual feature extraction, leading to inefficiencies and limited versatility in the overall process. Our research presents an intelligent defect detection methodology that leverages deep learning techniques to automate feature extraction and defect localization processes. Our proposed approach encompasses a suite… More >

  • Open Access

    ARTICLE

    Intelligent Solution System for Cloud Security Based on Equity Distribution: Model and Algorithms

    Sarah Mustafa Eljack1,*, Mahdi Jemmali2,3,4, Mohsen Denden6,7, Mutasim Al Sadig1, Abdullah M. Algashami1, Sadok Turki5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1461-1479, 2024, DOI:10.32604/cmc.2023.040919

    Abstract In the cloud environment, ensuring a high level of data security is in high demand. Data planning storage optimization is part of the whole security process in the cloud environment. It enables data security by avoiding the risk of data loss and data overlapping. The development of data flow scheduling approaches in the cloud environment taking security parameters into account is insufficient. In our work, we propose a data scheduling model for the cloud environment. The model is made up of three parts that together help dispatch user data flow to the appropriate cloud VMs. The first component is the… More >

  • Open Access

    ARTICLE

    Smart Healthcare Activity Recognition Using Statistical Regression and Intelligent Learning

    K. Akilandeswari1, Nithya Rekha Sivakumar2,*, Hend Khalid Alkahtani3, Shakila Basheer3, Sara Abdelwahab Ghorashi2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1189-1205, 2024, DOI:10.32604/cmc.2023.034815

    Abstract In this present time, Human Activity Recognition (HAR) has been of considerable aid in the case of health monitoring and recovery. The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance. Although many research works conducted on Smart Healthcare Monitoring, there remain a certain number of pitfalls such as time, overhead, and falsification involved during analysis. Therefore, this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning (SPR-SVIAL) for Smart Healthcare Monitoring. At first, the Statistical Partial Regression Feature Extraction model is used… More >

  • Open Access

    ARTICLE

    Smart Energy Management System Using Machine Learning

    Ali Sheraz Akram1, Sagheer Abbas1, Muhammad Adnan Khan2,3,5, Atifa Athar4, Taher M. Ghazal5,6, Hussam Al Hamadi7,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 959-973, 2024, DOI:10.32604/cmc.2023.032216

    Abstract Energy management is an inspiring domain in developing of renewable energy sources. However, the growth of decentralized energy production is revealing an increased complexity for power grid managers, inferring more quality and reliability to regulate electricity flows and less imbalance between electricity production and demand. The major objective of an energy management system is to achieve optimum energy procurement and utilization throughout the organization, minimize energy costs without affecting production, and minimize environmental effects. Modern energy management is an essential and complex subject because of the excessive consumption in residential buildings, which necessitates energy optimization and increased user comfort. To… More >

  • Open Access

    REVIEW

    Wireless Positioning: Technologies, Applications, Challenges, and Future Development Trends

    Xingwang Li1,2, Hua Pang1, Geng Li1,*, Junjie Jiang1, Hui Zhang3, Changfei Gu4, Dong Yuan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1135-1166, 2024, DOI:10.32604/cmes.2023.031534

    Abstract The development of the fifth-generation (5G) mobile communication systems has entered the commercialization stage. 5G has a high data rate, low latency, and high reliability that can meet the basic demands of most industries and daily life, such as the Internet of Things (IoT), intelligent transportation systems, positioning, and navigation. The continuous progress and development of society have aroused wide concern. Positioning accuracy is the core demand for the applications, especially in complex environments such as airports, warehouses, supermarkets, and basements. However, many factors also affect the accuracy of positioning in those environments, for example, multipath effects, non-line-of-sight, and clock… More >

Displaying 11-20 on page 2 of 409. Per Page