Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (192)
  • Open Access

    ARTICLE

    Improvements for calculating two-phase bubble and drop motion using an adaptive sharp interface method.

    Mark Sussman1, Mitsuhiro Ohta2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.1, pp. 21-36, 2007, DOI:10.3970/fdmp.2007.003.021

    Abstract In this paper, we describe new techniques for numerically approximating two-phase flows. Specifically, we present new techniques for treating the viscosity and surface tension terms that appear in the Navier-Stokes equations for incompressible two-phase flow. Our resulting numerical method has the property that results computed using our two-phase algorithm approach the corresponding "one-phase'' algorithm in the limit of zero gas density/viscosity; i.e. the two-phase results approach the one-phase free-boundary results in the limit that the gas is assumed to become a uniform pressure void. By grid convergence checks and comparison with previous experimental data, we More >

  • Open Access

    The Effect of Rotating Magnetic Fields on the Growth of SiGe Using the Traveling Solvent Method

    T. J. Jaber1, M. Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.3, pp. 175-190, 2006, DOI:10.3970/fdmp.2006.002.175

    Abstract The study deals with three-dimensional numerical simulations of fluid flow and heat transfer under the effect of a rotating magnetic field (RMF) during the growth of Ge0.98Si0.02 by the traveling solvent method (TSM). By using a RMF, an attempt is made to suppress buoyancy convection in the Ge0.98Si0.02 solution zone in order to get high quality and homogeneity with a flat growth interface. The full steady-state Navier-Stokes equations, as well as the energy, mass transport and continuity equations, are solved numerically using the finite element method. Different magnetic field intensities (B=2, 4, 10, 15 and 22 More >

  • Open Access

    ARTICLE

    Numerical Evaluation of T-stress Solutions for Cracks in Plane Anisotropic Bodies

    P.D. Shah1, Ch. Song2, C.L. Tan1, X. Wang1

    Structural Durability & Health Monitoring, Vol.2, No.4, pp. 225-238, 2006, DOI:10.3970/sdhm.2006.002.225

    Abstract Numerical T-stress solutions in two dimensional anisotropic cracked bodies are very scarce in the literature. Schemes to evaluate this fracture parameter in anisotropy have been reported only fairly recently. Among them are those developed in conjunction with two different computational techniques, namely, the Boundary Element Method (BEM) and the Scaled Boundary Finite-Element Method (SBFEM). This paper provides a review of the respective schemes using these techniques and demonstrates their efficacy with three examples. These examples, which are of engineering importance, involve cracks lying in a homogeneous medium as well as at the interface between dissimilar media. More >

  • Open Access

    ARTICLE

    Evaluation of T-stress for An Interface Crack between Dissimilar Anisotropic Materials Using the Boundary Element Method

    P.D. Shah1, C.L. Tan1,2, X. Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.3, pp. 185-198, 2006, DOI:10.3970/cmes.2006.013.185

    Abstract In this paper, the path independent mutual or M-integral for the computation of the T-stress for interface cracks between dissimilar anisotropic, linear elastic solids, is developed. The required auxiliary field solution is derived from the solution of the problem of an anisotropic composite wedge subjected to a point force at its apex. The Boundary Element Method (BEM) is employed for the numerical stress analysis in which special crack-tip elements with the proper oscillatory traction singularity are used. The successful implementation of the procedure for evaluating the T-stress in a bi-material interface crack and its application are demonstrated More >

  • Open Access

    ARTICLE

    Analysis of Structure with Material Interface by Meshfree Method

    S. Masuda1, H. Noguchi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.3, pp. 131-144, 2006, DOI:10.3970/cmes.2006.011.131

    Abstract This paper presents a novel and accurate technique for modeling discontinuous derivatives in meshfree methods, which will be used in the analysis of structures with material interfaces. The novelty lies in the formulation of the Moving Least Squares Approximation (MLSA) scheme where an introduced discontinuous derivative basis function replaces the conventional linear basis function. Furthermore, it is easy to implement this novelty into existing meshfree methods, such as the Element Free Galerkin (EFG) method, which are based on the MLSA scheme. The successful analyses of one and two-dimensional structures with material interfaces demonstrate the potential More >

  • Open Access

    ARTICLE

    Influence of Layer Height on Thermal Buoyancy Convection in A System with Two Superposed Fluids Confined in A Parallelepipedic Cavity

    Sunil Punjabi1, K. Muralidhar2, P. K. Panigrahi2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 95-106, 2006, DOI:10.3970/fdmp.2006.002.095

    Abstract Convection in a differentially heated two-layer system consisting of air and water was studied experimentally, using laser-interferometry. The cavity used for flow visualization was square in cross-section and rectangular in-plan having dimensions of 447 × 32 × 32 mm3. Experiments performed over different layer thicknesses of water filled in a square cross-section cavity, the rest being air, are reported in the present work. The following temperature differences for each layer height were imposed across the hot and the cold walls of the superposed fluid layers: (i) ΔT=10K and (ii)ΔT =18 K. The present study was aimed… More >

  • Open Access

    ARTICLE

    Influence of Thermocapillary Convection on Solid-liquid Interface

    K. Matsunaga1, H. Kawamura1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 59-64, 2006, DOI:10.3970/fdmp.2006.002.059

    Abstract Existing studies on solidification phenomena mainly focused on the solidification processes per se. In real systems, however, one cannot neglect the effects of molten material convective flow, such as natural and thermocapillary convection (they strongly affect the resulting quality of the solidified materials). The present study aims to experimentally investigate on the effect of the thermocapillary flow upon the directional solidification in a liquid layer with a free upper surface. If no free surface exists, the solid--liquid interface (SLI) is vertical and straight, while, with the free surface, the SLI is inclined against the wall-normal More >

  • Open Access

    ARTICLE

    Reconstruction of Interfaces between Electrically Conducting Fluids from Electrical Potential Measurements

    A.Kurenkov1, A.Thess2, H.Babovsky3

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 47-58, 2006, DOI:10.3970/fdmp.2006.002.047

    Abstract A possibility for the determination of the interface between two electrically conducting fluids in cylindrical geometry is presented. The fluids with different conductivities are situated in an infinite cylinder. Along the axis of the cylinder a homogeneous electrical current is applied. The perturbation of the interface leads to an inhomogeneous electrical current and, therefore, results in an electrical potential change in the fluids and a magnetic field modification outside the fluids. The dependence of the electrical potential on the interface shape is obtained analytically. The interface profile is then recovered from data of the electrical More >

  • Open Access

    ARTICLE

    Effect of Bubble Size and Location on Segregation Pattern and Interface Shape in Microgravity Crystal Growth

    M. Kassemi1, Y. Wang2, S. Barsi1,3, B.T.F. Chung2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 27-46, 2006, DOI:10.3970/fdmp.2006.002.027

    Abstract Microgravity experiments, especially materials processing experiments, have often been hampered by presence of unwanted bubbles. In this work, the effect of thermocapillary convection generated by a bubble on the Bridgman growth of a dilute binary alloy in microgravity is investigated numerically. The model is based on the quasi-steady Navier-Stokes equations for the fluid flow in the melt coupled with the conservation equations for transport of energy and species in the growth ampoule. Numerical results indicate three different growth regimes based on the distance between the bubble and the growth interface: a diffusion dominated regime that More >

  • Open Access

    ARTICLE

    Thermocapillary Effects in Systems with Variable Liquid Mass Exposed to Concentrated Heating

    M.El-Gammal1, J.M.Floryan1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.1, pp. 17-26, 2006, DOI:10.3970/fdmp.2006.002.017

    Abstract Interface deformation and thermocapillary rupture in a cavity with free upper surface subject to concentrated heating from above is investigated. The dynamics of the process is modulated by placing different amounts of liquid in the cavity. The results determined for large Biot and zero Marangoni numbers show the existence of limit points beyond which steady, continuous interface cannot exist and processes leading to the interface rupture develop. Evolution of the limit point as a function of the mass of the liquid is investigated. The topology of the flow field is found to be qualitatively similar, More >

Displaying 171-180 on page 18 of 192. Per Page