Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (75)
  • Open Access

    ARTICLE

    A Multi-Feature Weighting Based K-Means Algorithm for MOOC Learner Classification

    Yuqing Yang1,2, Dequn Zhou1,*, Xiaojiang Yang1,3,4

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 625-633, 2019, DOI:10.32604/cmc.2019.05246

    Abstract Massive open online courses (MOOC) have recently gained worldwide attention in the field of education. The manner of MOOC provides a new option for learning various kinds of knowledge. A mass of data miming algorithms have been proposed to analyze the learner’s characteristics and classify the learners into different groups. However, most current algorithms mainly focus on the final grade of the learners, which may result in an improper classification. To overcome the shortages of the existing algorithms, a novel multi-feature weighting based K-means (MFWK-means) algorithm is proposed in this paper. Correlations between the widely More >

  • Open Access

    ARTICLE

    Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection

    Ling Tan1,*, Chong Li2, Jingming Xia2, Jun Cao3

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 275-288, 2019, DOI:10.32604/cmc.2019.03735

    Abstract Due to the widespread use of the Internet, customer information is vulnerable to computer systems attack, which brings urgent need for the intrusion detection technology. Recently, network intrusion detection has been one of the most important technologies in network security detection. The accuracy of network intrusion detection has reached higher accuracy so far. However, these methods have very low efficiency in network intrusion detection, even the most popular SOM neural network method. In this paper, an efficient and fast network intrusion detection method was proposed. Firstly, the fundamental of the two different methods are introduced More >

  • Open Access

    ARTICLE

    A Clustering-based Approach for Balancing and Scheduling Bicycle-sharing Systems

    Imed Kacem, Ahmed Kadri, Pierre Laroche

    Intelligent Automation & Soft Computing, Vol.24, No.2, pp. 421-430, 2018, DOI:10.31209/2018.100000016

    Abstract This paper addresses an inventory regulation problem in bicycle sharingsystems. The problem is to balance a network consisting of a set of stations by using a single vehicle, with the aim of minimizing the weighted sum of the waiting times during which some stations remain imbalanced. Motivated by the complexity of this problem, we propose a two-stage procedure based on decomposition. First, the network is divided into multiple zones by using two different clustering strategies. Then, the balancing problem is solved in each zone. Finally, the order in which the zones must be visited is More >

  • Open Access

    ARTICLE

    SMK-means: An Improved Mini Batch K-means Algorithm Based on Mapreduce with Big Data

    Bo Xiao1, Zhen Wang2, Qi Liu3,*, Xiaodong Liu3

    CMC-Computers, Materials & Continua, Vol.56, No.3, pp. 365-379, 2018, DOI:10.3970/cmc.2018.01830

    Abstract In recent years, the rapid development of big data technology has also been favored by more and more scholars. Massive data storage and calculation problems have also been solved. At the same time, outlier detection problems in mass data have also come along with it. Therefore, more research work has been devoted to the problem of outlier detection in big data. However, the existing available methods have high computation time, the improved algorithm of outlier detection is presented, which has higher performance to detect outlier. In this paper, an improved algorithm is proposed. The SMK-means More >

  • Open Access

    ARTICLE

    A Machine Learning Approach for MRI Brain Tumor Classification

    Ravikumar Gurusamy1, Dr Vijayan Subramaniam2

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 91-108, 2017, DOI:10.3970/cmc.2017.053.091

    Abstract A new method for the denoising, extraction and tumor detection on MRI images is presented in this paper. MRI images help physicians study and diagnose diseases or tumors present in the brain. This work is focused towards helping the radiologist and physician to have a second opinion on the diagnosis. The ambiguity of Magnetic Resonance (MR) image features is solved in a simpler manner. The MRI image acquired from the machine is subjected to analysis in the work. The real-time data is used for the analysis. Basic preprocessing is performed using various filters for noise More >

Displaying 71-80 on page 8 of 75. Per Page